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Abstract 

 

 

 

This paper presents a new approach to portfolio management by providing preliminary 

empirical evidence that asset prices are linear polynomials of multiple basic factors - asset 

volumes, index price, index volume, time and preceding asset prices. Hence asset returns are 

nonlinear rational functions that do not add linearly in a portfolio, especially when they are 

averaged out over multiple time intervals. However, for time series data observed on single 

time interval basis, returns may be treated as approximately linear and modeled directly 

through a multiple regression model using the basic variables mentioned above and other 

relevant market factors. Accordingly, two new asset pricing models have been developed for 

average returns and continuous returns respectively that provide more accurate estimates as 

compared to existing linear models. 
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A New Approach to Asset Pricing 

 

 

 

 

The theory of modern portfolio management and asset pricing rests on the foundations 

laid by Markowitz (1952). He defined risk mathematically for the first time being the 

variance in returns. He also further propounded the twin objectives of maximizing returns 

while minimizing risks as the goal of all rational management of such investments and as a 

result the model of portfolio selection is also called as a ‘Mean Variance Model’. However, 

the Markowitzian framework of portfolio management assumes that all stock returns add 

algebraically in a portfolio and based on this assumption the Capital Asset Pricing Model 

(CAPM), given by Sharpe (1964) and Lintner (1965), advocates a linear relationship between 

the asset returns and the returns of the market proxy index. But, though the CAPM led to the 

very important revelation of the connection between the asset returns and the market returns, 

it did not quite match the actual empirical evidence. Many empirical studies of the model 

reported that the actual returns were consistently and systematically found to plot out much 

flatter than the estimated CAPM returns across increasing market risk. Hence, though the 

actual asset returns were found to be positively related to the market returns, as stated by the 

CAPM, they were found to be much slower in increasing with increasing risk resulting in a 

flatter, nonlinear plot. This mismatch of the CAPM estimates with the actual empirical 

returns could be due to the oversimplified assumptions used in developing the model or due 

to market inefficiencies. The two main assumptions used in the CAPM are: a) ‘complete 

agreement’ among the investors regarding the joint distribution of the asset returns during a 

given time interval of t-1 to t and b) a risk free lending rate. Due to the empirical mismatch of 
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the CAPM, a few other linear asset pricing models were put forth in order to improve upon 

the CAPM estimates. Among these, the Fama-French-3-Factor model (FF3F) developed by 

Fama and French (1996, 2004) is the most noteworthy and widely used today.  However, 

even the FF3F is a linear model that uses two additional factors in addition to the market 

returns based on the a) Size of the firm and b) Value of the Stock. Thus, even though these 

two additional factors improved upon the returns estimates, the theoretical motivations 

behind including these factors remained unexplained. Further, though the FF3F improved the 

accuracy of the estimated continuous returns, being a linear model it is again not able to fit 

the nonlinear empirical average returns. So the theoretical reasons behind the discrepancies 

between the CAPM estimates and the actual returns stay unexplained. This gives rise to a 

research gap that needs to be addressed especially since today’s finance world has become 

more sophisticated and demanding due to ongoing technological progress. Consequently, it is 

of the utmost importance that the theory of the asset markets should match the empirical 

reality.  

 

Accordingly, this paper has attempted to fill the above mentioned research gap by putting 

forth a new theory that attributes the above mentioned discrepancies between the theoretical 

and the empirical asset returns as being due to the non-linearity of the asset returns and the 

interplay of other deciding factors. Asset returns behave nonlinearly, especially when they are 

averaged over multiple time intervals since they are rational functions of their prices. This 

paper provides preliminary empirical evidence from the US, Australian and Indian markets, 

that the stock returns are rational functions of index price, index volume, preceding stock 

prices, stock volumes and time trends, thus behaving non-linearly across risk, especially 

when averaged out across time. The continuous returns behave approximately linearly but 
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again their estimation can be further improved upon by including additional relevant factors 

mentioned above.  

 

2. Brief Literature Review 

 

As already mentioned above, the CAPM is the most simple and still a highly popular asset 

pricing model in spite of its empirical drawbacks. It was given by Sharpe (1964) and Lintner 

(1965) as follows: 

 

E(Ri,t) = Rf,t + βi,m [E(Rm,t) – Rf,t], i =1, 2,.,N.                                       …(1)  

 

Here, Rf,t is the risk free rate of return at time ‘t’, E(Ri,t) and E(Rm,t) are the expected asset and 

the expected market returns respectively while βi,m is the market risk of the asset ‘i’. 

However, despite its simple intuitive appeal, the CAPM was not able to accurately estimate 

the actual returns. Numerous subsequent empirical studies (Douglas 1968; Friend and Blume 

1970; Miller and Scholes 1972; Blume and Friend 1973; Fama and MacBeth 1973; 

Stambaugh 1982; Fama and French 1992; Fama and French 2004 etc.) reported differences in 

the theoretical asset returns predicted by the CAPM and the empirical returns that were 

actually observed. They found that across increasing market risk βi,m, the actual asset returns 

Ri,t plotted out much flatter than the ones estimated through CAPM. Thus, the actual asset 

returns were found to be higher than the CAPM returns for lower risk and lower for higher 

risk. So, even though the actual asset returns were found to have a general positive 

relationship with the market premium (Rm,t – Rf), their plots were found to be nonlinear and 

much flatter than that of the CAPM estimates. The findings of these studies were summarized 

by Fama and French (2004) who themselves provided a very comprehensive empirical 
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evidence based on the monthly returns of US stocks from 1928 to 2003 as roughly 

represented in Figure 1. The Figure 1 shown below is an approximate copy of the actual plot 

given by Fama and French (2004) whereby the average returns of the portfolios are plotted 

against their post-ranking betas that are obtained by regressing the post-ranking portfolio 

returns on the market returns. The solid line is the linear plot of the CAPM average returns 

while the dots represent the actual average returns. 

 

 

 

 

 

Figure 1: Plot of Actual vs. CAPM returns across βi,m (Fama & French, 2004). 

 

 

Based on the above differences between the CAPM returns and the actual returns, Fama 

(Fama 1970, Fama and French 1996, 2004) put forward the Joint Hypothesis Problem (JHP) 

that these differences are due to either or both of the two possibilities – i) a flawed and 

incomplete asset pricing model that does not fully capture the empirical reality and/or ii) an 

inefficient market that does not abide by the idealistic assumptions of the theoretical model. 

In the meanwhile, various studies reported empirical evidence that various firm specific 
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financial data like the size, price to earnings ratios etc. contained additional information about 

asset returns that are not fully reflected by the CAPM estimates (Basu 1977, Stattman 1980, 

Banz 1981, Bhandari 1988 etc.). Fama and French themselves developed a three factor model 

(Fama and French, 1993, 1996, 2004) that utilizes two additional measures besides the index 

return, viz. the size of the firm and the value of the stock as measured by the book to market 

equity (B/M) ratio. The Fama French three factor model (FF3F) was found to capture 

variations in the expected stock returns that are not explained by the CAPM. The FF3F is 

given by: 

 

E(Ri,t) - Rf,t = βi,m [E(Rm,t) – Rf,t ) + βi,s E(SMBt) + βi,h E(HMLt)           …(2)  

 

Here, SMBt (small minus big) is the difference between the returns of the diversified 

portfolios of small and big stocks sorted on the basis of their sizes, i.e. their market 

capitalizations. Similarly, HMLt (high minus low) is again the difference between the returns 

of the diversified portfolios of high and low B/M stocks. The FF3F is now generally chosen 

over the CAPM because of its greater accuracy. However, according to Fama and French 

themselves, the FF3F suffers from the limitation that its two additional factors were included 

through empirical motivations while their underlying rationales remain unrevealed. Besides 

this, the second important drawback of the FF3F is that it is a linear regression model for the 

average returns whereas the empirical evidence indicates a nonlinear plot as evident from the 

Figure 1.  This signifies that even though FF3F had improved upon the CAPM estimates, 

there is still further scope of improvement of its accuracy. 
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3. New Asset Pricing Theory and Models 

 

 To resolve the above research gap, a new asset pricing theory and model has been 

developed in this paper wherein it has been explained that the above discussed discrepancies 

between the theoretical and the actual returns are due to the fact that asset returns do not add 

linearly in a portfolio. This is because the asset prices themselves are polynomials deriving 

from various relevant firm-related and market-related factors and the asset returns being 

ratios of consecutive prices are ‘rational functions’. Based on this, the new theory is called 

the ‘Rational Function’ (RF) theory. The RF theory has been built by re-visiting the basic 

fundamentals of Supply and Demand functions that govern the pricing of an asset through the 

quantity being traded. Many papers on technical analysis, classical academics and Causality 

Studies (Murray 1994, Polonchek and Krehbiel 1994, Pisedtasalasai and Gunasekarage, 

2006) have included Volume and time trends in determining asset returns but these papers 

have included these factors as motivated through patterns and not through any theoretical 

reasoning. The supply-demand framework provides this missing economical reasoning. Here, 

the quantity of the stock being traded is also called as the ‘Volumes’ in the language of the 

capital markets.  In general, the supply curve represents the quantities of an asset that the 

suppliers or sellers are willing to sell at different prices while the demand curve represents 

the quantities of the asset that the consumers or buyers are willing to buy at different prices, 

assuming ceteris paribus, i.e. all other factors remaining unchanged. The Supply-& Demand 

model was developed and popularized by Alfred Marshall in his 1890 textbook “Principles of 

Economics”, whereby the price is plotted along the vertical axis and the quantity along the 

horizontal axis. Thus, supply and demand functions together form the basis of price setting in 

a free market environment, such that the unit price for the traded good or asset varies freely 

till it settles at a point where the quantity demanded by the buyers will equal the quantity 
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supplied by the sellers, resulting in an economic equilibrium of price and quantity. The 

supply and demand functions are basically rooted in the rational market theory of profit 

maximization, whereby the buyers are expected to buy more at lower prices while the sellers 

are expected to sell more at higher prices. Since the buyers tend to buy more at lower prices, 

the demand curve would have a negative slope while the supply curve would have a positive 

slope as sellers tend to sell more at higher prices. These curves could be linear, but following 

the laws of increasing marginal cost for supply curve and decreasing marginal utility for 

demand curve, we tend to get exponential and logarithmic curves respectively. It may be 

noted that this framework of price-determination, through supply and demand forces, 

obviates the necessity of the unrealistic assumption of ‘complete agreement’ among the 

investors about the expected return of an asset, used in linear asset pricing models like 

CAPM.  

 

Further, when working directly with the prices, the assumption of a risk free rate of 

lending and borrowing that was used for CAPM and FF3F has also been dropped. For 

modelling the asset prices, the intercept is assumed to be zero because that would be the 

lowest price that could be payable for an asset. The intercept cannot be negative as no asset 

has negative price in a supply-demand framework but at the worst, an asset may lose all its 

value in a free market environment.  

 

Thus, an asset price is a function of its own preceding price, its own volume of trade, the 

market return (as represented by a suitable index proxy), the change in market volume and 

the time trend and cyclical patterns inherent in its series. The market return is found to 

directly influence the asset price formation. The time trend component of the asset price is 

represented by the exponential variation of the asset value with respect to the simple 
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chronological rank of the day ‘t’ in the whole sample of the time series of the prices being 

analyzed. In the practical scenario, the change in asset volume is overshadowed by the 

change in volume of the market index and hence only the latter has been considered in the RF 

theory.  

 

Accordingly, the RF Model (RFM) for asset pricing was derived as follows:    

   

pi,t =  βi1[{(1 + ln(pm,t/ pm,t-1) pi,t-1}] + βi2[ln(vm,t/vm,t-1)]
2 + βi3(-0.1)

tt
…(3) 

  

Here, pi,t and pi,t-1 are the asset prices on days ‘t’ and ‘t-1’ respectively while pm,t and 

pm,t-1 are the index prices. Similarly, vm,t and vm,t-1 are the corresponding index volumes and tt  is 

the time factor based on the chronological rank of the day ‘t’ in the whole sample. It may be 

noted that the role of the market proxy in the above model is in shaping the price formation of 

the asset as a portion of the current price pi,t varies in direct proportion with the market return 

as {1 + ln(pm,t/ pm,t-1) pi,t-1}.  

 

The above RFM equation is used for estimating the ‘average’ asset returns whereby 

the time series of prices are computed and the average returns are then obtained as the ratios 

of the average prices on two consecutive days ‘t-1’ and ‘t’. However, when studying the time 

series of ‘continuous’ asset returns, it was found that these returns behave approximately 

linearly and hence should be modeled directly from the relevant firm specific and market 

specific factors. This may be compared to the scenario whereby the Earth though spherical in 

shape as visible from space is treated as flat for trigonometrical calculations done for land 

surveys. For this, the FF3F was found to provide quite accurate estimates through the relevant 

market-specific terms Rf,t and Rm,t and the firm-specific terms SMBt and HMLt. Nonetheless, 
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the accuracy of the FF3F estimates for the ‘continuous’ asset returns could be further 

improved by including three more factors derived from the RF theory, which are the market 

volume, time factor and the preceding asset returns. It may be noted that the time factor for 

modeling the continuous returns is different from that used for modeling prices. This is 

because that while asset prices are influenced by the exponential variation of the time-ranks, 

the continuous returns are shaped by the quadratic variation of the time-ranks. Thus, for 

studying the ‘continuous’ asset returns, a model was derived by combining the FF3F model 

with the RF theory to give the following combined RFM&FF3F equation: 

 

Ri,t-Rf,t= βi,m(Rm,t–Rf,t)+βi,sSMBt+βi,hHMLt+βi,v[ln(vm,t/vm,t-1)]+βi,o(tt)
2+βi,l(Ri,t-1) ..(4) 

 

It should be clarified here itself that, Ri,t=ln(pi,t/pi,t-1); Rm,t=ln(pm,t/pm,t-1); and 

Vm,t=ln(vm,t/vm,t-1). Thus, in this paper, the asset returns have been studied in two different 

formats – a) Average returns and b) Continuous returns. 

 

a)   Average Returns – This format considers assets that have been ranked according to 

their returns variances over the last 12 observations. The time series of prices of these 

ranked assets are then computed as per RFM equation (3) and then averaged across the 

cross section of a portfolio to give the price series of the diversified portfolios. These 

portfolio prices are then again averaged from ‘t’ to ‘t+n-1’ intervals and from ‘t+1’ to 

‘t+n’ intervals, to obtain the average returns from the ratio of these average prices. 

These average portfolio returns are then listed according to their increasing risk and 

studied. This format is useful for plotting the risk-return profile of the assets and thus 

choosing the most mean-variance efficient asset portfolios.  

 



10 

 

b)  Continuous Returns – This format studies continuous asset returns across both 

increasing risk and time using the same time series of portfolio prices ranked according 

to their riskiness, used for the earlier format of average returns discussed above. 

However, here the average returns are not computed from the time series of the asset 

prices. Instead, we compute the time series of continuous asset returns from the asset 

prices. This format is useful in describing the contemporaneous asset returns across 

increasing risk and time. As already mentioned, the continuous portfolio returns were 

found to behave ‘approximately’ linearly since this format uses data on a single time 

interval basis. Hence, for this format the asset returns were modeled directly as per the 

RFM&FF3F equation (4).  

 

 

4. Methodology for the Empirical Tests 

 

The main objective of this paper is to provide preliminary empirical evidence on the 

RFM concepts. Accordingly, sample portfolios have been collected from three different 

markets– USA, Australia and India covering different time windows in order to demonstrate 

the free empirical validity of the RF theory. The USA samples S1 to S8 have been 

constructed out of the constituent stocks of three indices of various sizes - the 30 stocks of the 

Dow Jones Industrial Average (DJIA) as on April 30, 2013, the 395 stocks constituting the 

Barron’s 400 (B400) index as on August 01, 2013 and the 500 stocks constituting the S&P 

500 index as on August 01, 2013.  The monthly returns of the DJIA stocks were studied over 

the last ten years while the daily returns of the various US stocks have been considered from 

December 12, 2012 to April 30, 2013. The difference in the dates of selection of the 

components of DJIA and B400 and S&P500 is in order to add variety and depth to the 
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analysis and to demonstrate the robustness of the RFM to the choice of the stocks and time-

periods. As both small and large sample analyses of stocks are needed to test out any new 

investment theory, this paper has attempted both by considering sample sizes as small as 30 

and as large as 500. The B400 was considered not only because of its large size of 

components but also because its components are chosen on the basis of their superior 

performance which is different from the selection criteria of DJIA and S&P500 that consist of 

companies with large market caps. Similarly two sample portfolios were constructed of the 

100 pooled components of the S&P ASX 50 and S&P ASX Mid-cap 50 indices. The 

Australian samples were used to study their daily returns for 95 and 120 day time-windows 

contained within April 12, 2013 to September 30, 2013. Finally a sample of 30 stocks of the 

BSE Sensex as on January 1, 2005 was collected from India and their monthly returns were 

studied for an eight-year period from January 2002 to November 2009. Thus overall, the 

samples selected for this study represent a diversified view of the US, Australian and Indian 

markets from various time windows and the findings may be taken to be free from any 

selection biases. The daily price and volume data for the stocks as well as the indices for the 

USA and Australian markets were collected from the databases purchased from a licensed 

vendor called Norgate Investor Services which is based in Australia. The Indian data was 

collected from the Prowess Database provided by Centre for Monitoring Indian Economy 

(CMIE). The details of the various samples S1 to S11 that have been collected and studied 

have been provided in Table 1. Besides the stock market data, the monthly and the daily time 

series data for the Rf,t values and the SMBt and the HMLt factors used in the FF3F model for 

the US and the Indian markets, were collected from Kenneth R. French’s website, wherein 

the data for the US and the Asia Pacific regions have been provided. For the Australian 

market the Rf,t was dropped as it was mentioned on Kenneth French’s website that the daily 

values of Rf,t were negligible for the time period being studied. The Australian FF3F factors 
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SMBt and HMLt were obtained by computing the difference in portfolio returns formed by 

sorting the 100 companies used for this study on the basis of a) their market capitalizations 

for SMBt and b) their B/M ratios for HMLt over the two quarters during April 2013 to 

September 2013 using the archived accounting data for these companies provided by the 

Australian Financial Review. The collected data were then arranged into separate samples S1 

to S11 as shown in Table 1.  

 

 The stocks in each of these samples were first sorted as per increasing risk as 

measured by the variances of their returns through a rolling time frame of the last 12 

observations and then regrouped into five smaller portfolios P1 to P5 consisting of 6 stocks 

each for DJIA, 79 stocks each for B400, 100 stocks each for S&P500, 20 stocks each for the 

Australian samples and 6 stocks each for BSE Sensex, wherein P1 consists of the stocks of 

lowest variances while P5 contains the stocks of the highest variances. Besides these 5 

portfolios, the returns of the full sample portfolio (P-full) consisting of all the sample stocks 

were also analyzed and studied. After sorting the stocks, the ranked series of stock prices 

were reconstructed from the actual stock returns for each rank, using some common base 

number (like 100), so as to avoid the sudden abrupt changes in the prices of these rank-stocks 

after each sorting. The above data for the samples S1 to S11 were then analyzed using the 

CAPM, the FF3F model and the RFM equations (3) and (4) for the two different formats, 

based on ‘average’ and ‘continuous’ returns respectively, as discussed above. These results 

have been reported in Tables 2 to 10. The estimated returns obtained for the both the formats 

by the CAPM, the FF3F and the RFM models have been compared for their empirical 

validity through their correlations with the actual returns as well as through their Sum of 

Squared Errors (SSE) with respect to the actual returns for each of the six portfolios P1 to P-

full within each sample S1 to S11.  
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In addition to the Tables 2 to 10, the results of the analyses using equation (3) for the 

‘average’ returns have been plotted as eleven charts for the samples S1 to S11 that have been 

given under Figure 2. The charts provided under Figure 2 pictorially indicate the empirical 

veracity of the estimated returns and can be used to form expectations of the risk-return 

profiles of the various assets that are being studied. 

 

 

5. Results and Discussion 

 

As already mentioned, all the results have been reported in the Tables 2 to 10. 

To start with, it is obvious from the Tables 2, 3, 4 and 5 that the t-statistics of the slopes 

for the index price is the highest for all the models, thus indicating that it is the most 

important factor in all the equations. As given in Table 2, the t-statistics of the βi,m for 

the CAPM are in the range of 18.35 to 74.68. The t-statistics for βi,m in the FF3F model 

are in the range of 17.74 to 77.31 as listed in Table 3. From the Table 3, it can be further 

seen that for the FF3F model, the t-statistics of βi,s and βi,h are much lower than those for 

βi,m and are in the range of -1.36 to 8.71 and -2.02 to 2.08 respectively. This indicates 

that the market return Rm,t is the most important variable in determining the asset returns. 

Similarly, the t-statistics of the slopes for the market return factor βi,1 for RFM equation 

(3) as shown in Table 4, are the highest and are in the range of 274.32 to 3463.38.  

 

However, it can be seen from the results given in Table 6 that the ‘average’ 

returns estimated by the RFM equation (3) have consistently the highest correlations 

with the actual average returns and are all above 98%. On the other hand, the 
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correlations of the CAPM and the FF3F estimates are quite unpredictable and are both 

negative and positive in values. The t-statistics of the correlations are again highest for 

the RFM estimates and lie in the range of 9.09 to 127.87. This shows that the ‘average’ 

returns computed from the RFM equation (3) are the most accurate. This conclusion is 

further strengthened by the results given in Table 7 and the charts provided under Figure 

2. Further, on comparing the correlations between the CAPM and the FF3F estimates 

with the actual average returns, it is seen that both CAPM and FF3F provide nearly 

similar results and FF3F provides no clear advantage over the CAPM. It is only the RFM 

estimates that are clearly more accurate than both CAPM and RFM estimates. In fact, the 

negative correlations of the CAPM and the FF3F estimates with the actual ‘average’ 

returns show that these linear models do not depict the true non-linear picture of average 

asset returns across increasing risk as obvious from the charts in Figure 2, even though 

they might have identified important and relevant factors influencing the asset returns. 

This proves that the asset returns are basically non-linear in nature as they are the 

rational functions of prices. As the charts of Figure 2 show that the RFM estimates of the 

‘average’ returns are nearly same as those of the actual returns while that is not so for the 

other two linear models CAPM and FF3F, it proves the basic empirical validity of the 

RFM theory. 

 

The same conclusions are borne out by the values of the Sum of Squared Errors 

of Average Returns (SSEA) as computed from the difference in values of the estimates 

and actuals, which are given in Table 7, indicating that the RFM estimates for average 

returns obtained from the equation (3) are consistently most accurate. The RFM 

estimates for the ‘average’ returns provides improvements of over 90% to the CAPM 

and FF3F estimates. Thus, it follows that though the index price might be the most 
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important variable in computing asset returns, by itself it cannot provide the important 

improvements brought in by the nonlinearity and other factors used in RFM.  

 

However, for the ‘continuous’ returns, the asset returns behave approximately 

linearly and should be modeled directly through linear regression models as already 

mentioned in the preceding sections. Thus for studying the continuous returns, the FF3F 

model has been combined with three additional factors identified by the RF theory, 

which are market volumes, time and preceding returns as shown in the combined 

RFM&FF3F model equation (4). As can be seen from the Table 8, the average 

correlations between the actual ‘continuous’ returns and the RFM estimates are again 

marginally, but consistently, higher than those of the CAPM and the FF3F estimates. 

This shows that the RFM definitely provides a chance to improve the FF3F estimates for 

the continuous returns as well. Even though the FF3F data is supposed to work best for 

large samples having been specifically obtained from them, the RFM&FF3F model 

provides better estimates.  

 

Similarly, it can be seen from the Table 9, that the Sum of Squared Errors 

(SSE) between the actual ‘continuous’ returns and the RFM&FF3F ‘continuous’ returns 

are all less than those of the CAPM and the FF3F estimates. It is also evident that the 

FF3F estimates are all more accurate than the CAPM estimates but the combined 

RFM&FF3F estimates have the least errors and hence are the best. The improvements in 

SSE provided by the combined RFM&FF3F model over the FF3F model are in the range 

of 1.27% to 8.28%. The improvements over the CAPM estimates lie in the range of 

11.59% to 55.99%. The reason behind the generally higher accuracy of the FF3F 

estimates for S7 maybe because of the fact that the large number of the constituent 
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stocks of B400 are chosen on the same performance principles as the ones that underline 

the construction of the factors SMB and HML in the FF3F model. However, it should be 

noted that finally, the combined RFM&FF3F model outperforms all the other models for 

the continuous contemporaneous returns. It can be seen from the Table 9 that the 

percentage improvements in errors are higher for the US markets and larger samples S7 

and S8 at above 8%. 

 

Further, it can be seen from the two bottom rows of Table 9, that a paired t-test 

for no improvement in the SSE values for the FF3F model over the CAPM model i.e. H0: 

(SSECAPM –SSEFF3F)/ SSECAPM ≤ 0 can be safely rejected at a p value of 1.39%.  

Similarly, paired t-tests for no improvement due to RFM&FF3F combined equation (4) 

over CAPM and FF3F equation can be rejected safely at pvalues of 0.67% and 0.14% 

respectively. This shows that the combined equation (4) provides definite improvements 

in accuracy over the CAPM and the FF3F models and has the least errors in its 

estimates. Thus, the RFM&FF3F equation (4) is a clear improvement over the CAPM 

and the FF3F models in estimating and describing the ‘continuous’ asset returns. Hence, 

even though the ‘continuous’ asset returns behave approximately linearly across 

increasing risk for time series analyses, yet the additional independent variables like 

market volumes, time factor and preceding returns that have been included apart from 

the index return, in the combined RFM are important in improving the accuracy of the 

estimated asset returns for this format.  
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6. Conclusions 

 

The RFM estimates of the ‘average’ asset returns are more accurate than both the CAPM and 

the FF3F estimates as indicated by the results from the equations (3) that are tabulated in 

Tables 6 and 7 and plotted as charts under Figure 2. This shows that the average asset returns 

are non-linear in nature and hence do not add linearly in a portfolio. However, for practical 

purposes the ‘continuous’ asset returns should be treated as ‘approximately’ linear for time 

series data involving single time intervals and the returns should be modeled directly through 

linear regression techniques. Even then, the additional factors included in the combined 

RFM&FF3F equation (4) apart from the index return, like the index volume, the time trend 

and the preceding asset returns should be used for estimating the continuous asset returns for 

both cross-sectional as well as time-series data. The FF3F factors of Size and B/M ratio are 

found to increase the accuracy of the estimates of the ‘continuous’ returns over those of the 

CAPM model and hence should be used in combination with the RFM model. Since, both 

prices and volumes are important in RFM, this theory indicates that the asset price and the 

asset volume are complementary market forces, as the third basic factor – time is an 

uncontrollable passive factor. Further, the charts of the Risk Format indicate that risk-return-

efficient investments should be carefully selected from such charts as sometimes the lower 

risk assets offer the higher returns. Thus, it seems that the RFM theory, if used judiciously, 

could help the investors to make better and more mean-variance efficient investments in the 

stocks as compared to the existing asset pricing models. 

 

 

 



18 

 

References 

 

Banz, R. W.,1981. The Relationship Be-tween Return and Market Value of Common Stocks. 

Journal of Financial Economics. 9:1, 3-18 (1981) 

Basu, S. Investment Performance of Common Stocks in Relation to Their Price- Earnings 

Ratios: A Test of the Efficient Market Hypothesis. Journal of Finance. 12:3, 129-56 (1977) 

Bhandari, L.C. 1988. Debt/Equity Ratio and Expected Common Stock Returns: Empirical 

Evidence. Journal of Finance. 43:2, 507-28 (1988)  

Blume, M.E., Friend, I.: A New Look at the Capital Asset Pricing Model. Journal of Finance 

28, 19-33 (1973) 

Douglas, G.W.: Risk in the Equity Markets: An Empirical appraisal of Market Efficiency. 

University Microfilms, Ann Arbor, Michigan (1968) 

Fama, E.F.: Efficient Capital Markets: A Review of Theory and Empirical Work. Journal of 

Finance 25, 383-417 (1970) 

Fama, E.F., French, K.R.: The Cross-Section of Expected Stock Returns. Journal of Finance 

47, 427-65 (1992) 

Fama, E.F., French, K.R.: Common Risk Factors in the Returns on Stocks and Bonds. Journal 

of Financial Economics. 33, 3-56 (1993) 

Fama, E.F., French, K.R.: Multifactor Explanations of Asset Pricing Anomalies. Journal of 

Finance. 51, 55-84 (1996) 

Fama, E.F., French, K.R.: The Capital Asset Pricing Model: Theory and Evidence. The 

Journal of Economic Perspectives 18, 25-46 (2004) 

Fama, E.F., MacBeth, J.D.: Risk, Return, and Equilibrium: Empirical Tests. Journal of 

Political Economy 81, 607-36 (1973) 



19 

 

Friend, I., Blume, M.E.: Measurement of Portfolio Performance under Uncertainty. American 

Economic Review 60, 607-36 (1970) 

Lintner, J.V.: The Valuation of Risk Assets and the Selection of Risky Investments in Stock 

Portfolios and Capital Budgets. Review of Economics and Statistics 47, 13-37 (1965) 

Markowitz, H.M.: Portfolio Selection. Journal of Finance 7, 77-99 (1952) 

Miller, M.H., Scholes, M.S.: Rates of Return in Relation to Risk: A Reexamination of Some 

Recent Findings. In Jensen, M.C. (Ed.), Studies in the Theory of Capital Markets. Praeger, 

New York (1972) 

Murray, P.G.: Pre-announcement share price run-ups and abnormal trading volumes in 

takeover target’s shares: A test of the market speculation hypothesis, Pacific-Basin Finance 

Journal, 2 (2-3) 319-348 (1994) 

Pisedtasalasai, A. and Gunasekarage, A.: The casual and dynamic relationship between stock 

returns and trading volume: Evidence from emerging markets in South-East Asia, Working 

Paper, University of Canterbury and University of Waikato, New Zealand, (www.ssrn.com) 

(2006) 

Polonchek, J. and Krehbiel, T.: Price and Volume Effects Associated with Changes in the 

Dow Jones Averages, The Quarterly Review of Economics and Finance, 34 (4), 305-316 

(1994) 

Sharpe, W.F.: Capital Asset Prices: A Theory of Market Equilibrium under Conditions of 

Risk. Journal of Finance 19, 425-42 (1964) 

Stambaugh, R.F.: On the Exclusion of Assets from Tests of the Two-Parameter Model: A 

Sensitivity Analysis. Journal of Financial Economics 10, 237-68 (1982) 

Stattman, D. Book Values and Stock Returns. The Chicago MBA: A Journal of Selected 

Papers.4, 25-45 (1980)  

 
 



20 

 

Table 1: Names of Portfolios 
 

S. 

No.  
Portfolios Market Data from to 

Type of 

Returns 

Number of 

Observations

Market 

Proxy 
Names 

1 30 components of DJIA as on April 30, 2013 USA 30-May-03 30-Apr-13 Monthly 120 DJIA S1 

2 30 components of DJIA as on April 30, 2013 USA 30-May-03 30-Apr-13 Monthly 120 S&P 500 S2 

3 30 components of DJIA as on April 30, 2013 USA 30-Jun-05 30-Apr-13 Monthly 95 DJIA S3 

4 30 components of DJIA as on April 30, 2013 USA 30-Jun-05 30-Apr-13 Monthly 95 S&P 500 S4 

5 30 components of DJIA as on April 30, 2013 USA 12-Dec-12 30-Apr-13 Daily 95 DJIA S5 

6 30 components of DJIA as on April 30, 2013 USA 12-Dec-12 30-Apr-13 Daily 95 S&P 500 S6 

7 396 components of B400 as on August 1, 2013 USA 12-Dec-12 30-Apr-13 Daily 95 S&P 500 S7 

8 500 components of S&P 500 as on August 1, 2013 USA 12-Dec-12 30-Apr-13 Daily 95 S&P 500 S8 

9 

100 components of S&P ASX 50 and S&P ASX 

Mid-Cap 50 as on May 15, 2013 Australia 20-May-13 30-Sep-13 Daily 95 

ASX All 

Ordinaries S9 

10 

100 components of S&P ASX 50 and S&P ASX 

Mid-Cap 50 as on May 15, 2013 Australia 12-Apr-13 30-Sep-13 Daily 120 

ASX All 

Ordinaries S10 

11 

30 components of BSE Sensex as on January 1, 

2005 India 31-Jan-02 30-Nov-09 Monthly 95 BSE Sensex S11 
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Table 2: Average t-statistics for slopes of CAPM: Ri,t = Rf,t + βi,m (Rm,t – Rf,t ) 

 

Sample Portfolios 
Average t-statistics across P1 to P-full 

βi,m  

S1 25.66 

S2 23.57 

S3 25.00 

S4 21.59 

S5 20.06 

S6 18.75 

S7 24.11 

S8 34.45 

S9 23.25 

S10 23.63 

S11 74.68 

 



22 

 

Table 3: Average t-statistics for slopes of FF3F: Ri,t - Rf,t = βi,m (Rm,t – Rf,t )+βi,s SMBt+ βi,h HMLt                                                      

 

Sample 

Portfolios 

Average t-statistics across P1 to P-full 

βi,m  βi,s βi,h  

S1 23.32 1.11 0.98 

S2 21.07 -0.91 1.53 

S3 23.06 0.84 1.46 

S4 19.68 -1.12 2.08 

S5 19.12 0.05 1.08 

S6 17.74 -1.36 0.36 

S7 28.76 8.71 -2.02 

S8 34.50 4.06 1.31 

S9 21.85 2.60 -0.07 

S10 22.40 4.01 0.69 

S11 77.31 1.20 0.12 
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Table 4: Average t-statistics for slopes of RFM Equation:  

pi,t =  βi1[{(1 + ln(pm,t/ pm,t-1) pi,t-1}] + βi2[ln(vm,t/vm,t-1)]
2 + βi3(-0.1)t

t  

 

Sample 

Portfolios 

Average t-statistics across P1 to P-full 

βi1  βi2 βi3  

S1 513.83 0.28 -0.98 

S2 477.16 0.63 -0.10 

S3 459.47 0.56 -0.11 

S4 398.26 0.77 -0.02 

S5 2632.44 -0.01 -0.27 

S6 2303.79 0.98 1.00 

S7 2511.50 -1.52 -0.85 

S8 3463.38 -0.96 -0.41 

S9 2355.99 -0.14 -0.51 

S10 2485.67 -0.89 0.32 

S11 274.32 -0.64 -0.02 
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Table 5: Average t-statistics for slopes of Combined RFM-&-FF3F Equation:  

Ri,t - Rf,t = βi,m (Rm,t – Rf,t )+βi,s SMBt+ βi,h HMLt +βi,v[ln(vm,t/vm,t-1)] + βi,o(tt)
2+βi,l(Ri,t-1) 

 

Sample Portfolios 
Average t-statistics across P1 to P-full 

βi,m  βi,s βi,h  βi,v βi,o βi,l 

S1 21.80 1.24 0.90 -0.92 0.06 0.24 

S2 20.13 -0.90 1.66 -0.42 0.40 -0.73 

S3 21.55 0.92 1.33 -0.72 0.16 0.04 

S4 18.90 -1.13 2.17 -0.19 0.40 -0.77 

S5 18.65 0.17 1.12 -0.10 0.64 -0.89 

S6 17.08 -1.22 0.36 0.14 0.66 -0.21 

S7 28.01 8.72 -1.89 -1.46 0.11 0.42 

S8 33.55 4.09 1.42 -1.00 0.37 0.35 

S9 21.14 2.67 -0.12 0.83 0.53 -1.20 

S10 21.97 3.63 0.52 0.70 0.37 -0.52 

S11 66.04 1.24 0.30 -0.33 0.43 -0.87 
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Table 6: Correlation of Estimated Average Returns with Actual Average Returns across P1 to P-full 

 

Portfolios 
CAPM FF3F RFM 

Correlation t-stats Correlation t-stats Correlation t-stats 

S1 -81.74% -2.46 -81.75% -2.46 99.88% 34.63 

S2 -79.46% -2.27 -81.53% -2.44 99.87% 33.59 

S3 -79.37% -2.26 -67.55% -1.59 99.75% 24.46 

S4 -77.19% -2.10 -58.10% -1.24 99.73% 23.68 

S5 46.82% 0.92 43.55% 0.84 98.23% 9.09 

S6 52.44% 1.07 48.00% 0.95 98.77% 10.94 

S7 33.23% 0.61 31.64% 0.58 98.27% 9.20 

S8 -73.59% -1.88 -63.86% -1.44 98.65% 10.45 

S9 25.07% 0.45 25.78% 0.46 99.86% 32.46 

S10 65.35% 1.50 75.89% 2.02 99.95% 53.82 

S11 39.22% 0.74 17.13% 0.30 99.99% 127.87 
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Table 7: Sum of Squared Errors of Average Returns (SSEA) of Estimated Average Returns as compared to 

Actual Average Returns across P1 to P-full  

 

Portfolios CAPM FF3F RFM 
Improvement 

over CAPM 

Improvement 

over FF3F 

S1 9.93E-05 1.25E-04 4.07E-07 99.59% 99.68% 

S2 9.72E-05 1.18E-04 4.33E-07 99.55% 99.63% 

S3 1.19E-04 1.13E-04 5.90E-07 99.50% 99.48% 

S4 1.07E-04 1.03E-04 6.00E-07 99.44% 99.42% 

S5 3.12E-07 2.38E-07 1.81E-08 94.21% 92.40% 

S6 4.85E-07 7.85E-07 2.40E-08 95.06% 96.95% 

S7 7.13E-07 1.90E-07 8.04E-09 98.87% 95.78% 

S8 8.52E-07 3.50E-07 7.89E-09 99.07% 97.74% 

S9 7.12E-07 8.72E-07 1.05E-08 98.53% 98.80% 

S10 3.04E-07 2.73E-07 6.95E-09 97.71% 97.45% 

S11 8.80E-05 1.12E-04 3.79E-07 99.57% 99.66% 
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Figure 2: Charts of the Average Returns across Increasing Risk  
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Table 8: Average Correlations between the Estimated Continuous Returns and the Actual Continuous 

Returns  

 

 

Portfolios CAPM FF3F RFM&FF3F 

S1 89.85% 90.74% 91.03% 

S2 88.57% 89.56% 90.02% 

S3 90.93% 91.95% 92.42% 

S4 89.54% 90.83% 91.38% 

S5 85.73% 87.07% 87.95% 

S6 84.90% 86.21% 86.91% 

S7 92.27% 96.32% 96.57% 

S8 95.89% 97.01% 97.17% 

S9 92.03% 92.74% 93.03% 

S10 90.29% 91.88% 91.97% 

S11 92.61% 93.01% 93.24% 
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Table 9: Sum of Squared Errors (SSE) between the Estimated and the Actual ‘Continuous’ Returns  

Portfolios SSECAPM SSEFF3F SSERFM&FF3F 
(SSECAPM –SSEFF3F)/ 

SSECAPM 

(SSECAPM –SSERFM&F3F)/ 

SSECAPM 

(SSEFF3F –SSERFM&F3F)/ 

SSEFF3F 

S1 5.66E-02 5.00E-02 4.75E-02 11.58% 16.10% 5.11% 

S2 5.87E-02 5.30E-02 5.01E-02 9.64% 14.67% 5.56% 

S3 4.88E-02 4.02E-02 3.72E-02 17.76% 23.76% 7.29% 

S4 5.18E-02 4.31E-02 3.98E-02 16.82% 23.13% 7.59% 

S5 1.23E-03 1.12E-03 1.06E-03 9.34% 14.01% 5.15% 

S6 1.26E-03 1.16E-03 1.12E-03 7.98% 11.59% 3.92% 

S7 1.01E-03 4.84E-04 4.44E-04 52.02% 55.99% 8.28% 

S8 4.69E-04 3.21E-04 2.95E-04 31.47% 37.12% 8.25% 

S9 1.46E-03 1.34E-03 1.29E-03 8.67% 12.15% 3.81% 

S10 2.37E-03 1.99E-03 1.97E-03 15.98% 17.04% 1.27% 

S11 1.18E-01 9.80E-02 9.45E-02 16.88% 19.88% 3.61% 

   Paired t-test 
H0: (SSECAPM –SSEFF3F)/ 

SSECAPM ≤ 0 

H0: (SSECAPM –SSERFM&FF3F)/ 

SSECAPM ≤ 0 

H0: (SSEFF3F –SSERFM&FF3F)/ 

SSEFF3F ≤ 0 

   t-statistic 3.07 3.75 5.44 

   pvalue 1.39% 0.67% 0.14% 

 


