What Prompts You to Share Information about Communal Risks?

Jisoo Ahn,
Health and New Media Research Institute,
Hallym University, Republic of Korea.
E-mail: jisooahn6@gmail.com

Su-Min Yu,
Department of Interaction Design,
Hallym University, Republic of Korea.
E-mail: vycigg@naver.com

Ghee-Young Noh,
School of Media Communication,
Hallym University, Republic of Korea.
E-mail: gnoh@hallym.ac.kr

Abstract

This study examines information-sharing motivators in the context of the MERS-CoV outbreak in Korea in 2018. A survey regarding social cognitive factors and actual information-sharing experiences was conducted. An analysis of the data from diverse information-sharing perspectives showed that negative affective response and subjective information-sharing norms played a critical role in information sharing. This study also discusses the different patterns of information processing compared to previous information behavior research.

Key Words: information sharing, information processing, risk information seeking and processing model (RISP), MERS-CoV
1. Introduction

The fear of MERS-CoV (MERS) swept through the Korean public and the government for the first time in three years again after a MERS carrier was identified in September 2018. This infectious disease, which is more prevalent in the Middle East, caused 186 infections and 39 deaths with a 20.97% fatality rate in Korea in 2015 (Korea Broadcasting Company, 2015). During that period, the Korean government did not provide a list of hospitals that the incubatory carriers had visited, and the public also lacked knowledge and risk perception regarding the disease. In the end, shortcomings in the process to be informed by either individual themselves or the government caused the catastrophic results that unfolded over 217 days, including the failure to effectively control the infection. Because of this experience, when a suspected case was discovered in 2018, the Korean government and the public were highly concerned about the disease.

This case showed that the provision of disease information and accurate understanding of a disease are critical for individuals as well as the collective health system. To enhance health security for infection control purposes, which intertwines individual and collective aspects of health, increasing health knowledge and education is considered a primary strategy for empowering the community (Heymann et al, 2015). Enhancing public knowledge of the disease is necessary, especially when individual health is related to community health (Yang, Kahlor and Griffin, 2014).

These days, people are increasingly using social media as a means of sharing information (Sharma, Yadav, Yadav and Ferdinand, 2017) to confirm each other’s safety (Facebook, 2014), especially with regard to obtaining updates and new information during disasters or health crises (Twitter, 2013). Thus, more attention should be paid to individuals’ information sharing and processing—not only in terms of receiving information but also in terms of disseminating information during such tragic situations (Takahashi, Tandoc and Carmichael, 2015).

Thus, this present study examines information-sharing behaviors, which Koreans directly engaged in during the 2018 MERS outbreak and the motivators underlying their behavior. Moreover, based on existing information seeking and processing models, a framework for information sharing and processing is proposed.

2. Literature Review

2.1 Risk Information Seeking and Processing (RISP) Model

Synthesized from the heuristic-systematic model ([HSM] Chaiken and Eagly, 1993) and theory of planned behavior ([TPB] Ajzen, 1991; Ajzen and Fishbein, 2005), the risk information seeking and processing model ([RISP] Griffin, Dunwoody and Neuwirth, 1999) explains the mechanism underlying individuals’ risk information processing. The core of this model is the sufficiency principle, which implies that individuals seek and process risk
information until they achieve a sufficient confidence level regarding their knowledge. RISP research has focused on identifying the relationships between the influential factors underlying information sufficiency—perceived hazard characteristics, affective responses, informational subjective norms—and outcomes of (in)sufficiency—seeking intention and the depth of information processing (Griffin et al, 2008; Kahlor and Rosenthal, 2009; ter Huurne, Griffin and Gutteling, 2009). The other factors, such as relevant channel beliefs and perceived information gathering capacity, influence information seeking/processing behaviors, but little research has been conducted on such relationships (Catellier and Yang, 2012).

Many information-sharing studies assume that sharing has processing and antecedent variables that are similar to seeking behavior and explain information sharing by using a seeking-based framework, since there is no available theory or model regarding information sharing (Kahlor, Dudo, Liang, Lazard and AbiGhannam, 2016). For example, the motivators underlying information seeking in RISP are used to predict information sharing regarding climate change (Yang, Kahlor and Griffin, 2014). As such, Yang et al.’s study, however, provided exploratory research that identified the direct effects of RISP factors on sharing instead of applying all the RISP paths. This may have resulted because of the difficulty of applying factors and paths from RISP to sharing behavior processing; this is because the model was developed for seeking behavior.

Therefore, we first introduced the motivations underlying sharing behavior in three perspectives and then applied the related factors from RISP to explain the behavior.

2.2 Volunteerism vs. Information Exchange

The first perspective focuses on the purpose of information sharing. One section of information/knowledge sharing literature insists that sharing behavior is motivated by the pleasure and satisfaction one derives from one’s actions (Yan, Wang, Chen and Zhang, 2016). As a type of altruistic behavior (Andreoni, 1990), individuals share information to help others (He and Wei, 2009). In this case, by contributing knowledge, they achieve intrinsic benefits or rewards (Hung, Durcikova, Lai and Lin, 2011; Kankanhalli et al, 2005; Wasko and Faraj, 2005). The voluntary transmission of relief information without the expectation of receiving a tangible payback during disasters is one example of this type of information sharing (e.g., Huang, Chan and Hyder, 2010). This behavior is meaningful in that individuals provide their knowledge or information to those who have “less” information. The RISP model does not include the direct relationship between perceived knowledge and seeking behavior (Figure 1), and this new relationship can be considered within the context of sharing behavior, which “provides” one’s resources in terms of protecting health.

The other section of knowledge sharing explains this behavior as a method of exchanging information in accordance with the theory of social exchange (Bock et al, 2005; KanKanhalli et al, 2005; Liao, Yuan and McComas, 2018; Park, Gu, Leung and Konana, 2014). For example,
it is claimed that information sharing happens when potential gains from or contributions to a collective pool of knowledge (Yuan et al, 2005) or information is needed (Scholten, Van Knippenberg, Nijstad and De Dreu, 2007). This view of sharing behavior, which expects that people will achieve reciprocity by interacting with others, is consistent with the explanations provided by RISP research that information insufficiency leads to information seeking.

Likewise, given that there are contrasting motivations for information sharing, it is possible to think that individuals share information because they have sufficient information or seek information due to insufficient information/knowledge. Therefore, we pose the following relevant research question:

RQ1: What are the relationships between 1) the information insufficiency and 2) the perceived knowledge and sharing behavior?

2.3 Cognition vs. Emotion

The second perspective is extended further to include affective processing. The RISP model focuses on the cognitive aspects of individuals’ information processing, and it shows how a series of motivators, such as risk perception and affective response, influence the assessment of one’s current knowledge and the need for further information. The empirical evidence of such relationships has shown that risk perception is positively related with negative affective responses (e.g., fear, anger, worry) and, subsequently, has a positive relationship with information insufficiency (Griffin et al, 2008; Yang and Kahlor, 2013; Yang, Rickard, Harrison and Seo, 2014; Yang et al, 2018). In addition, previous RISP research has found that the perceived need for information affects information seeking (e.g., Lu, 2015; Yang and Kahlor, 2013). As such, much research has identified the significant motivators that underlie the rational and systematic processing of information seeking, whereas few research studies have focused on the direct effects of emotion on information behavior within the RISP context.

In situations where individuals forward and share information (regardless of whether it is correct), eWord-of-Mouth communication and rumor dissemination literature can be consulted to explain emotional processing. Individuals tend to spread information when they feel uncertain (Valente, Poppe and Merritt, 1996), stressful (Ryfe, 2005), and anxious (DiFonzo, Robinson, Suls and Rini, 2012). In addition, the rapid spreading of information during fearful situations, such as disasters, can lead to the spread of inaccurate and false information (Kongthon, Haruechaiyasak, Pailai and Kongyoung, 2012). Since the contents of a given piece of information or message are perceived more seriously when the negative affects are induced by a threat (Anthony, 1973), this type of information sharing can be problematic (Kongthon et al, 2012).

To summarize the two types of information sharing and processing, we can hypothesize that the relationships between information sharing and 1) negative affects derived from risk perceptions regarding a health issue and 2) further knowledge assessment. Current knowledge
and information insufficiency were separately included in the hypotheses regarding the knowledge assessment.

H1: Risk perception will be positively related to negative affective response.

H2: Negative affective response will be positively related to perceived information insufficiency.

H3: Negative affective response will be negatively related to perceived knowledge.

H4: Negative affective response will be positively related to sharing behavior.

2.4 Situation-Specific vs. General Motives

The two abovementioned perspectives explain individuals’ behavioral variability regarding “a given task” (Ajzen, 1991)—in this case, the process of deeply thinking about a specific disease, MERS. However, the RISP model and a planned risk information seeking model (PRISM) focus not only on situation-specific factors but also on “general disposition” motives (Ajzen, 1991) based on TPB. A meta-analysis of RISP research (Yang, Aloe and Feeley, 2014) found that dispositional factors such as subjective norms, which are not tied to risk issues, are useful for predicting individuals’ behaviors.

The core premise of TPB is that behavior is determined by the attitudes toward that specific behavior, subjective norms, and perceived behavioral controls (Ajzen, 1988, 1991; Ajzen and Fishbein, 2005). This theory has been employed as a framework for explicating information seeking intentions and behaviors, and it has been extended to risk information seeking models (see Griffin et al, 2008; Kahlor, 2007, 2010). The three factors of TPB have been adjusted according to the information seeking context as follows: attitude toward seeking (PRISM); informational subjective norms (RISP) or seeking-related subjective norms (PRISM); and perceived information gathering capacity (RISP) or perceived seeking control (PRISM).

A few studies have explored the TPB motivators underlying information sharing and their effects. Across contexts such as climate change, nanoscientists’ ethics, and farming, attitudes (Kahlor et al, 2016; Liao et al, 2018) and subjective norms (Kahlor et al, 2016; Liao et al, 2018; Yang, Kahlor and Griffin, 2014) are positively related to information-sharing intention or actual behavior. In addition, attitudes (Hsu and Lin, 2008) and self-efficacy (Hsu, Ju, Yen and Chang, 2007; Lu and Hsiao, 2007) were found to be significant predictors of knowledge sharing.

Therefore, we suggested that the components of TPB—attitudes, norms, and perceived capacity—should be considered in order to explain information-sharing behavior, and we then formulated a series of hypotheses.

H5: Attitudes toward information sharing are positively related to sharing behavior.

H6: Subjective information-sharing norms are positively related to sharing behavior.

H7: Perceived information-sharing capacity is positively related to sharing behavior.
3. Methodology

In September 2018, 988 Korean samples were collected from a survey company. Participants received credits from the company after completing a 15-20-minute survey. The survey questionnaire included a screenshot of a September 2018 TV news program on the MERS outbreak in Korea and the variables for predicting sharing behavior (risk perception, negative affective response, sufficiency threshold, perceived knowledge, attitudes toward sharing, subjective sharing norms, and perceived information-sharing capacity). The average age of the respondents was 40.46 years (ranging from 20 to 59 years), and 48.7% were females (n = 481).

3.1 Measures

Only information-sharing items were designed based on the information-forwarding literature, and the other items for the RISP or PRISM variables were adapted from previous research. Table 1 represents the items and descriptive data for each variable.

Information sharing. The experience of sharing MERS information was assessed based on the extent to which participants delivered MERS-CoV information to others. Four 5-point scale items (1: not at all, 5: very much) were adapted from Kim and Lee’s (2014) information forwarding study: “I talked about my opinions regarding MERS with my friends and coworkers,” “If it was possible, I took the time to explain this problem to others,” “I looked for chances to share my knowledge and thoughts about this problem,” and “I volunteered to inform others about the problem” (M = 2.90, SD = .95, α = .90).

Risk perception. The likelihood of MERS infecting the respondents and the seriousness of the disease risk to themselves were assessed as risk perception. Formulated based on Yang, Kahlor and Griffin (2014), risk perception was assessed by measuring the following four items with a 5-point scale: “Did you perceive MERS as a serious risk to yourself?,” “Did you feel that you would have chances of contracting MERS?,” “Did you think that MERS would pose a Severe threat to you?,” and “Did you think that you would become infected with MERS?” (M = 3.29, SD = .83, α = .86).

Negative affective response. Respondents were asked about their negative feelings toward MERS. Five items were adapted from the previous information seeking and emotion research (Yang and Kahlor, 2013; Yang et al, 2018): “When I received information from the government during the early stages of the MERS outbreak, I was worried/anxious/scared/fearful/frightened of contracting the disease” (M = 3.24, SD = .89, α = .93).

Perceived knowledge. The perception of respondents’ current knowledge regarding MERS was measured by using one item (Yang, Kahlor and Griffin, 2014): “Keeping in mind the period during which you received the information about MERS (during the early stages of infection
control), please estimate your knowledge regarding MERS on a scale from 0 (knowing nothing) to 100 (knowing everything you could possibly know about the topic)” (M = 62.02, SD = 19.13).

Information insufficiency. Sufficiency threshold was assessed based on the extent of information required to have sufficient knowledge regarding the disease; a scale from 0 to 100 was used for this assessment. As with prior research (Kahlor, 2007; Yang, Kahlor and Griffin, 2014), the impact of perceived knowledge on the sufficiency threshold was controlled to assess information insufficiency (M = 9.23, SD = 20.16).

Attitudes toward information sharing. Respondents’ evaluations of the information-sharing behavior regarding MERS were assessed using three 7-point bipolar scale items selected from Yang and Kahlor (2013): “Please indicate whether you felt that sharing information about MERS was harmful/beneficial, bad/good, worthless/valuable.” (M = 5.24, SD = 1.14, α = .91).

Subjective information-sharing norms. Subjective information-sharing norms, which contain injunctive norms (i.e., others’ expectations regarding one’s information sharing) and descriptive norms (i.e., others’ information-sharing behavior), were assessed using five items adapted from Kahlor and Rosenthal (2009): “Most of the people who are important to me thought that I should share information about MERS,” “I was expected to share information about MERS,” “People whose opinions I value would approve of my sharing information about MERS,” “I thought that people whose opinions I value had also shared information about MERS,” and “The people I spend most of my time with were likely to share information related to MERS” (M = 3.20, SD = .72, α = .89).

Perceived information-sharing capacity. The confidence derived from one’s ability to share MERS information is defined as perceived information-sharing capacity. Three items adapted from Kahlor and Rosenthal (2009) were used: “It was easy to deliver accurate information about MERS to others,” “When I wanted to, I was easily able to share information about MERS with others,” and “I could easily share MERS information with others” (M = 3.35, SD = .66, α = .80).

3.2 Analysis

Data were analyzed by performing structural equation modeling with AMOS 22 software. This analysis provides the results of the measurement model—convergent and discriminant validity (Kline, 2016) and model fit indices—and hypotheses testing.

4. Results and Discussion

4.1 Measurement Model

The factor loading scores and average variance extracted (AVE) were calculated to assess construct validity. All factor loading scores and AVE were greater than .7 and .6, respectively (Table 1); they were well over the cutoff point of .5 (Hair, Black, Babin, Anderson and Tatham, 2006). The results indicate that the items of each construct obtained convergent validity.
Discriminant validity is used to determine whether two different constructs are not correlated by comparing AVE and the squared correlations between two constructs (i.e., shared variance). As shown in Table 2, all AVE values were greater than the shared variance pairs; this implies that discriminant validity was achieved.

Table 1: Summary of the Confirmatory Factor Analysis

<table>
<thead>
<tr>
<th>Construct and item</th>
<th>Factor loading</th>
<th>SE</th>
<th>C.R.</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk perception</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>.74</td>
<td>.40</td>
<td></td>
<td>.87</td>
</tr>
<tr>
<td>RP</td>
<td>.85</td>
<td>.30</td>
<td></td>
<td>.62</td>
</tr>
<tr>
<td>RP</td>
<td>.72</td>
<td>.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>.80</td>
<td>.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affective risk response</td>
<td></td>
<td></td>
<td></td>
<td>.94</td>
</tr>
<tr>
<td>ARR</td>
<td>.72</td>
<td>.38</td>
<td></td>
<td>.75</td>
</tr>
<tr>
<td>ARR</td>
<td>.82</td>
<td>.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARR</td>
<td>.90</td>
<td>.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARR</td>
<td>.92</td>
<td>.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARR</td>
<td>.91</td>
<td>.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitude toward information sharing</td>
<td></td>
<td></td>
<td></td>
<td>.86</td>
</tr>
<tr>
<td>ATIS</td>
<td>.85</td>
<td>.40</td>
<td></td>
<td>.68</td>
</tr>
<tr>
<td>ATIS</td>
<td>.89</td>
<td>.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATIS</td>
<td>.88</td>
<td>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjective information-sharing norms</td>
<td></td>
<td></td>
<td></td>
<td>.91</td>
</tr>
<tr>
<td>SISN</td>
<td>.74</td>
<td>.33</td>
<td></td>
<td>.67</td>
</tr>
<tr>
<td>SISN</td>
<td>.79</td>
<td>.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SISN</td>
<td>.82</td>
<td>.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SISN</td>
<td>.79</td>
<td>.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SISN</td>
<td>.77</td>
<td>.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived information-sharing capacity</td>
<td></td>
<td></td>
<td></td>
<td>.87</td>
</tr>
<tr>
<td>PISC</td>
<td>.75</td>
<td>.29</td>
<td></td>
<td>.68</td>
</tr>
<tr>
<td>PISC</td>
<td>.80</td>
<td>.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PISC</td>
<td>.72</td>
<td>.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information sharing</td>
<td></td>
<td></td>
<td></td>
<td>.90</td>
</tr>
<tr>
<td>IS</td>
<td>.70</td>
<td>.53</td>
<td></td>
<td>.69</td>
</tr>
<tr>
<td>IS</td>
<td>.90</td>
<td>.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>.89</td>
<td>.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>.86</td>
<td>.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of Discriminant Validity

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Risk perception</td>
<td>.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Affective response</td>
<td>.58</td>
<td>.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Attitude</td>
<td>.06</td>
<td>.04</td>
<td>.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Subjective norms</td>
<td>.26</td>
<td>.24</td>
<td>.07</td>
<td>.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Perceived capacity</td>
<td>.11</td>
<td>.06</td>
<td>.08</td>
<td>.28</td>
<td>.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Information sharing</td>
<td>.38</td>
<td>.41</td>
<td>.03</td>
<td>.47</td>
<td>.19</td>
<td>.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Perceived knowledge</td>
<td>.07</td>
<td>.06</td>
<td>.05</td>
<td>.11</td>
<td>.14</td>
<td>.14</td>
<td>.14</td>
<td>1</td>
</tr>
<tr>
<td>8. Information insufficiency</td>
<td>.02</td>
<td>.01</td>
<td>.0005</td>
<td>.02</td>
<td>.04</td>
<td>.05</td>
<td>.46</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Perceived knowledge and information insufficiency were measured by using one item for each.

Several model fit indices of the measurement model, including χ^2/df ratio, standardized root-mean-square residual (SRMR), comparative fit index (CFI), Tucker-Lewis index (TLI), and root mean square error of approximation (RMSEA), were checked using confirmatory
factor analysis. Instead of χ^2, which is sensitive to sample size (Bollen, 1989), the χ^2/df ratio was reported. Determined by the conventions (Kline, 2016; Hooper, Coughlan and Mullen, 2008; Hu and Bentler, 1999), the indices showed that the proposed model fits well with the data: χ^2/df ratio (4.69; less than 5), SRMR (.05; less than .08), CFI (.94; greater than .95), TLI (.93; greater than .95), and RMSEA (.06, [90% CI: .05, .06]; less than .08). Figure 1 shows that, as we had predicted, most of the paths and directions were significant.

Figure 1: Structural Equation Model for Information Sharing

![Structural Equation Model](image)

Note. N = 988. Standardized beta coefficients are reported.

4.2 Hypothesis Testing

We asked the relationship between information insufficiency (RQ1) and perceived knowledge (RQ2) and sharing behavior. The results showed that information insufficiency was not significantly related to information sharing ($\beta = -.05, p = .08$), whereas perceived knowledge was positively related to information sharing ($\beta = .08, p < .05$).

Hypotheses 1-4 were about the paths that led from risk perception to sharing behavior: risk perception and negative affective response (H1); negative affective response and information insufficiency (H2); negative affective response and perceived knowledge (H3); and negative affective response and information sharing (H4). The results of H1 and H4 supported our predictions; risk perception was positively related to negative affective response ($\beta = .84, p < .001$), and negative affective response was positively related with sharing behavior ($\beta = .39, p$...
However, negative affective response was not significantly related to information insufficiency ($\beta = .04, p = .09$); thus, H2 was not supported. In addition, H3 was disconfirmed because there was a positive relationship between negative affective response and perceived knowledge ($\beta = .25, p < .001$).

Hypotheses 5-7 focused on the associations between dispositional factors and information sharing. The results indicated that attitude toward information sharing had a negative relationship with information sharing ($\beta = -.09, p < .001$); this finding disconfirms H5. Thus, H5 was not supported. H6, which posited that subjective information-sharing norms would be positively related to information sharing, was supported ($\beta = .52, p < .001$). H7 predicted a positive relationship between perceived information-sharing capacity and information sharing; however, these variables did not show such a significant relationship ($\beta = .06, p = .07$). Thus, H7 was not supported.

4.3 Discussion

This study investigated the motivators that underlie the sharing of MERS information and the paths of information processing. We constructed an information-sharing model based on the RISP model and TPB and found some similar as well as different patterns compared to seeking behavior. The study results can be interpreted using three perspectives.

4.3.1 Volunteerism vs. Information Exchange

First, we investigated the purpose of information sharing in terms of knowledge estimation. Our results indicated that individuals tend to share MERS information when they feel that they have sufficient knowledge about the topic. This finding is evident in Yang et al (2014) and explained through the concepts of self-policing and quality-control. In other words, sharing does not occur unless a certain level of knowledge is achieved. If the information to be shared is about an unfamiliar topic (for example, infection), this tendency can be highlighted further. Thus, this study result is in line with the results of the relationship between information insufficiency and information sharing in our study. Even though the relationship was not significant, the negative direction means that the perception that more information is necessary is related to less sharing of one’s knowledge with others. The converse also holds true. These findings show that, in the MERS-related context, information-sharing behavior was better explained by considering the aspect of voluntarily providing well-known information rather than the aspect of exchanging unshared information.

4.3.2 Cognition vs. Emotion

Second, we considered rational and emotional processing to explain the mechanisms underlying information sharing. As discovered in the prior information-seeking research, we also found that risk perception reveals feelings of worry and fear regarding MERS, and this negative affect directly influences information sharing while indirectly influencing information sharing through perceived knowledge. However, when the powers of the two paths were
compared, affective processing (.39) had a higher explanatory power than rational processing (.02). Mirroring other seeking and sharing studies (Yang, Kahlor and Griffin, 2014; Yang, Kahlor and Li, 2014), the respondents in our study, those who had more negative affects, shared and forwarded MERS information, regardless of their knowledge level. This finding and the process of rumor spreading have similar patterns. According to Takayasu and colleagues (2015), when an earthquake hit Japan in 2011, Japanese people posted fearful and anxious tweets regarding gas tank explosions and retweeted false information about harmful chemical materials. As such, sharing information without verification while one is in a state of arousal can cause chaos, especially during disaster situations.

The comparison of the two types of processing produced an interesting finding: individuals who had negative affective responses felt that they had a high level of knowledge and believed that they did not have a significant need for more information. This study’s findings are not consistent with the findings in previous information-seeking research that negative affective responses regarding health or environmental issues lead to a low level of perceived knowledge and a high level of information insufficiency (Griffin et al, 2008; ter Huurne et al, 2009). The different patterns found in our study may have resulted from the specific situation in Korea—this is the second time a MERS outbreak has occurred in Korea. People were able to fully access extensive information regarding the disease by observing the uncontrolled MERS outbreak over three months in 2015. Furthermore, because of this experience, the fear of MERS may have been easily evoked when people received MERS information again.

4.3.3 Situation-Specific vs. General Motives

The last information-sharing perspective involves examining whether individuals determine their behavior through assessment of a specific issue (i.e., paths from risk perception to sharing in Figure 1) or through their dispositional and environmental motives.

This study showed that sharing behavior had a negative relationship with attitude toward sharing, a positive relationship with subjective norms, and a non-significant relationship with sharing capacity. These findings can be explained through an examination of the MERS outbreak experience in Korea. Liao et al (2018) reported that beliefs regarding reciprocity in risk information sharing are positively related with attitude. Unlike information seeking, information sharing is a behavior aimed at “provision” rather than “gain.” That is, assuming that reciprocity is based on the benefit directed back to oneself, sharing or delivering information does not require direct and immediate tangible benefits. Therefore, if the respondents weighed the value of sharing with regard to reciprocity, the result that those who had positive attitudes toward sharing were less likely to share is understandable because it is possible that they thought that there was no new information to receive. The results regarding capacity may be consistent with those regarding attitude. Information-sharing ability may be
less important than the other mentioned reasons for sharing (for example, “reciprocity” or “intrinsic reward”).

On the other hand, as in previous seeking and sharing studies (e.g., Kahlor et al, 2016; Yang, Kahlor and Griffin, 2014), subjective norms had the strongest positive impacts on behavior. This powerful social motivation may also be affected by past experience. Since people know that some ignorant individuals could spread the disease, others’ expectation regarding their sharing as well as their own sharing behavior may be enough to increase the community’s shared responsibility in providing protections against a communal risk (Liao et al, 2018). Furthermore, responsibility may play a critical role in compelling people to share information.

The findings of this study have theoretical and practical implications. First, we described the characteristics of information sharing and showed how this behavior is explained by the RISP model and TPB. By identifying different patterns of information processing in sharing behavior compared to seeking behavior, ways to modify existing relationships within information-seeking models were suggested. Second, the mechanisms underlying information sharing in an infectious disease context, especially where people have sufficient relevant knowledge thanks to past experiences, were analyzed. Even though the RISP model stresses the importance of perceived knowledge and information insufficiency, this study showed that another type of processing (i.e., affective)—rather than cognitive processing—works strongly in the case of well-known diseases; this, in turn, contributes to the development of information-processing models focused on rational processing.

In practical terms, our study proposes the components that should be considered when information about an infectious disease is being provided. For example, disease-control or emergency agencies should keep in mind that since information is circulated by the public, they should disseminate enough information so that individuals feel comfortable enough to share the relevant information with others. In addition, since sharing accurate information is necessary, the agencies should make preparations to reduce negative affects regarding a health crisis; this will help them prevent rapid online transmission of unfiltered (mis)information. Moreover, a normative approach can be used to create messages for infection prevention; highlighting others’ expectations and shared responsibility can be a useful strategy for enhancing information sharing.

5. Conclusions and Recommendations

As an early information-sharing study, we applied information seeking models and the relevant variables to explain sharing behavior. Moreover, we found unexpected patterns in the information processing mechanism. We presumed that the results may have been caused by the recurrence of the disease, but more potential reasons should be considered.
In addition, we suggest that future research should examine the type of information shared. For example, it would be interesting to contrast what information individuals tend to share when they go through cognitive processing, as opposed to affective processing. One possible assumption is that, if individuals perceive that their information is not sufficiently comprehensive enough to share, they may share only confirmed information; however, if they are not aware of their knowledge level and are in a state of increased arousal, they will have a higher likelihood of disseminating ambiguous information. Thus, in order to deliver the right information to the right people, the relationship between types of information and processing needs to be identified.

References

