Evaluating Study for Performance of Royal Jordanian and King Hussein Airport in Light of IATA New Trends

Dr. Farouk Abdelnaby Hassanein Attaallah,
Faculty of Tourism and Hotels,
Fayoum University, Fayoum, Egypt.
Email: faroukttllh@yahoo.com

Abstract

The aims of study are to shed light on the most recent trends and issues addressed by the versions of IATA organization for air transport during the period October 2007 - October 2012; and to assess of the current situation in the Royal Jordanian and King Hussein Airport in the light of recent trends of the IATA during the period October 2007 - October 2012. The study tried to examine the Hypotheses of study saying that: the staff of Royal Jordanian Airline and King Hussein Airport is aware of issues in IATA published materials through the period October 2007 – October 2012; the Royal Jordanian Airline and King Hussein Airport apply IATA international standards in the services provided; and there are no significant differences among Sub-Means of the company variable at level 5 %. The Methodology of study consists of Qualitative Approach, Case Study Techniques, Purposive Sample, and SPSS – V – 17. There are limitations of study concluded in scientific limit: IATA versions from October 2007 to October 2012; location limit: Royal Jordanian and King Hussein Airport in Aqaba; and achievement limit: from August 2012 to December 2012. The findings of study reveal that the majority of staff in the Royal Jordanian Airlines and Aqaba Airports Company in Aqaba are unaware of recent issues in IATA published materials. As a result, the hypotheses No. 1 and No. 2 are refused. While, the statistical findings point out that there are no significant differences among sum-means of company variables and the modest value of correlation between the company variable and respondent variable. Consequently and as a whole, the null hypothesis No. 3 is accepted. The study recommends raising the awareness of IATA issues and standards in different areas of King Hussein Airport in Aqaba and the Royal Jordanian Airlines in general and particularly in Aqaba. Also, the importance of conducting more studies to evaluate the range of adopting and application of IATA standards and criteria in airports and airlines performance.

Key words: Royal Jordanian, King Hussein Airport, Simplifying the Business, Safety, Solar Airplane
1. Introduction

1.1. Background

The head of the Board of Commissioners of Aqaba Special Economic Zone Authority (ASEZA) Kamel Mohaidein outlined importance King Hussein International Airport in strengthening the investment climate in in Aqaba to become a competing services area in the Middle East region. He noted that it includes a range of investments in the field of air transport more than 100 million dinars (Al Kalaa, 2012, p: 5). ASEZA is keen to raise the efficiency of operation of the airport in accordance with the best international standards to keep pace with global progress in the air transport industry. It will open a group of five-star hotels at the airport, so the airport will be ready to deal with flights and travelers in unprecedented numbers (Al Kalaa, 2012, p: 5).

The general manager of Aqaba Development Company (ADC), Engineer Munir Assad, touches on the strategic plan being implemented to develop airport facilities through 2030 and that the total cost up to nearly 60 million financed by ADC owner of the assets of the airport (Al Kalaa, 2012, p: 5).

The importance of this research is revealed from dealing with a crucial theoretical issue "new IATA trends" in air transport industry being one of the most dynamic economic sector in the world. Moreover, the current study focused on the Royal Jordanian Airline and King Hussein Airport since they have practical value in Jordan.

1.2. Research Questions

The study tries to answer the following two questions:
- Do staff of Royal Jordanian Airline and King Hussein Airport is aware of issues in IATA published materials through period October 2007 – October 2012?.
- Do the Royal Jordanian Airline and King Hussein Airport apply IATA international standards in the services provided?

1.3. Objectives of Study

- Highlighting the most recent trends and issues addressed by the versions of IATA organization for air transport during the period October 2007 - October 2012.
- Assessment of the current situation in the Royal Jordanian and King Hussein Airport in the light of recent trends of the IATA during the period October 2007 - October 2012.

2. Review of Literature

The data have been gathered over time and be organized chronologically from October 2007 to October 2012.
2.1. IATA’s STB programme

IATA’s Simplifying the Business (STB) programme consists of five projects: electronic ticketing, common use self-service check-in, bar coded boarding passes, radio frequency identification (RFID) for aviation and IATA e-freight (IATA, 2007-13, p: 2).

The programme exceeded all of its board targets for 2008 thanks to its global network of airline and airport managers, solution providers, industry experts and IATA staff as being clear in table no.1. This fact that IATA have exceeded all our board targets shows the importance with which the industry views this programme.

Table 1: Target and actual of STB programme

<table>
<thead>
<tr>
<th>Project</th>
<th>2008 Target</th>
<th>Actual – Dec 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>100% ET 1 June</td>
<td>Complete</td>
</tr>
<tr>
<td>BCBP</td>
<td>200 airlines BCBP capable</td>
<td>204 airlines BCBP capable</td>
</tr>
<tr>
<td>CUSS</td>
<td>130 airports offering CUSS</td>
<td>135 airports offering CUSS</td>
</tr>
<tr>
<td>IATA e-freight</td>
<td>14 live locations</td>
<td>18 live locations</td>
</tr>
<tr>
<td>BIP</td>
<td>Launch at 6 airlines, 6 airports</td>
<td>Launch at 9 airlines, 9 airports</td>
</tr>
<tr>
<td>Fast Travel</td>
<td>12 pilots, 2 in each of 6 areas</td>
<td>18 pilots</td>
</tr>
</tbody>
</table>

Source: IATA, 2009-9, p: 2

2.1.1. Useful postings on the StB Support Portal: Interactive Maps

IATA presented a series of Interactive Maps using Google Maps offering useful information by airport to track ET, BCBP and CUSS implementation around the world. The three maps cover more than 1000 airports and will be updated on a monthly basis to provide the industry with the latest view of airport progress (IATA, 2007-19, pp: 2-3).

2.1.2. CUSS implementations around the world

Specific information about their CUSS implementation in live airports include (IATA, 2007-19, p: 3):
- Date CUSS was first installed
- Kiosk vendor
- Number of airlines currently using the kiosks
- Charges
- Bag drop availability, and more.

Air experts expected that travel experience with expanded self-service options give passengers more control over their journeys. The new strategy is built around the success of the Common-Use Self-Service Kiosk, already operating at 83 airports around the world. Moreover, baggage management will help mitigate the US$3 billion in annual costs from the
1.8% of bags that are mishandled (IATA, 2007-20, p: 2). More than half of all passengers surveyed in the latest IATA Corporate Air Travel Survey in 2010 want airlines to provide them with more self-service options. The Fast Travel Program focuses on five areas in a passenger’s journey where self-service can be introduced: bags ready-to-go (bag registration), document check, Flight re-booking, self-boarding and bag recovery 'lost bag registration' (IATA, 2010-50, p: 3).

2.1.3. Electronic ticketing - ET

On 27 August 2007, The International Air Transport Association (IATA) announced it has placed its final order for paper tickets. And it was estimated in just 278 more days the paper ticket will become a collector’s item (IATA, 2007-5, p: 1). Airlines should be able to manage the transition to full electronic ticketing on 1 June 2008 (IATA, 2007-10, p: 2).

In order to ensure a smooth transition to a 100% ET world on 1 June 2008, IATA has forwarded to airlines and travel agents using IATA BSPs documentation covering key issues such as (IATA, 2007-25, p: 3):

- Use of the Virtual Miscellaneous Document (V-MPD) and Electronic Miscellaneous Document (EMD).
- Consequences of a neutral paper ticket being issued on/after 1 June 2008
- Impact of the elimination of neutral paper tickets on 3rd parties in the BSP

There are some primary challenges concerning ET: ground handling, many airlines have not yet implemented a solution for their ground handler to check in passengers with e-tickets and as a result airlines need to find immediate alternatives rather than waiting for their ground handler to develop the ideal solution; Airlines also need to think about alternative ticketing methods for those tickets that agents will not be able to issue as ETs from 1st of June 2008. Alternatives include placing their own airline tickets in travel agencies or, more likely, having agents issue Multi Purpose Documents (MPDs) or virtual MPDs (IATA, 2008-8, p: 2).

2.1.4. Bar coded boarding passes - BCBP

Mobile phone check-in enables airlines to send 2D bar codes directly to a passenger's mobile phone, personal digital assistant or smart phone. Passengers simply register their mobile number with their airline at the time of booking to receive a text message with a 2D bar code, or instructions to download it. The bar code becomes the passenger's boarding pass and it is read directly from the screen of the mobile device, eliminating paper completely from the check-in process (IATA, 2007-13, p: 1).

The industry has set a deadline of the end of 2010 to implement 100% bar coded boarding passes (BCBP). Upon full implementation, BCBP will save the industry over US$500 million annually. The global introduction of BCBP to replace magnetic stripe technology is one of...
five simplifying the Business (StB) projects launched by IATA in 2004 (IATA, 2007-13, p: 2).

According to the Joint Passenger Services Conference (JPSC), the year 2010 is sunset deadline for mag stripe encoded boarding passes into the ticketing resolutions, thereby formally signaling the end to mag stripe encoded ATB2 boarding passes. Carriers will now be able to include a 2D bar code in the ET itinerary receipt enabling passengers to get a quick and direct access to the check-in transaction at the kiosk. By scanning the bar code on the itinerary receipt the kiosk application will identify the passenger and its flight and immediately show the corresponding flight details and options. The passenger is then only one click away from his/her (bar coded) boarding pass. This was possible through changes/additions to Resolutions 722f (IATA, 2007-15, p: 2).

To help airlines and airports match their BCBP implementation plans, IATA has pleased to announce the launch of the BCBP Matchmaker. The BCBP Matchmaker is a free and automated service which allows airlines and airports to send each other request for implementation dates (IATA, 2008-8, p: 4).

At the end of 2010, airlines worldwide completed the implementation of the 2D bar coded boarding pass (IATA, 2010-2, p: 2).

2.1.5. IATA e-freight

Paper-free cargo was estimated to become a reality on key trade routes connecting Canada, Hong Kong, the Netherlands, Singapore, Sweden and the U.K. At each location cargo experts from participating airlines, freight forwarders, ground handling agents, local customs administrations and airport authorities worked together closely over 10 months to prepare the pilots (IATA, 2007-16, p: 1).

There are 4 project streams that support the delivery of e-freight (IATA, 2007-16, p: 2):

- Planning and Development
- Implementation
- Data Quality and Technology Management
- Processes and Standards

The electronic airway bill (E-AWB) is one of the 20 documents planned for conversion with e-freight. An industry standard e-AWB that will eliminate the need to print, handle and archive paper airway bills is being trialed by three airlines and 11 freight forwarders. In addition to greater efficiency, the trials are demonstrating that e-AWB can deliver faster air freight shipments with reduced delays because the electronic documents cannot be lost or misplaced (IATA, 2010-10, p: 2).

E-freight penetration stood at 11% at the end of 2011, ahead of the 10% target set by the IATA Board of Governors. IATA sees three components to achieving 100% by 2015. First,
we need to understand e-freight is a supply chain initiative driven forward by the Global Air Cargo Advisory Group (GACAG). Second airlines must drive forward the implementation of the e-air waybill (E-AWB). Cathay Pacific and Emirates have led the way with mandating 100% E-AWB in their home markets. And finally IATA must ensure that the rapidly developing BRICS countries are on board. Current E-AWB penetration is 4.6%. IATA is targeting 15% E-AWB penetration by the end of 2012 and 100% by 2014 (IATA, 2012-17, p: 2).

- The Baggage Management Improvement Programme

This aims to ensure the passenger is reunited with their baggage at final destination by improving baggage processes to reduce baggage mishandling. IATA will provide an industry methodology to reduce baggage mishandling through a solutions toolkit, workshops and an internet tool to facilitate cooperation among industry stakeholders. In 2008, IATA secured the participation of 6 airlines and airports in the programme (IATA, 2007- 22, p: 2).

The year 2010 saw IATA bring the total number of airports visited as part of the Baggage Improvement Program (BIP) up to 46. The total number of airports participating in the self-help program went up to 27. The most valuable solution in the IATA BIP toolkit is the introduction of baggage tracking (IATA, 2011- 7, p: 3).

IATA now counting down to the end of the Baggage Improvement Program (BIP) which has to be concluded in December 2012 (IATA, 2012- 6, p: 3).

2.2. Environmental Performance

Air Transport industry efficiency translates into improved environmental performance. Airlines contribute 2% of manmade C02. IATA’s vision is to do even better. It was targeted carbon neutral growth in the near term. And in the longer-term the goal is nothing less than to become carbon-free. The challenge for the 190 contracting States of ICAO is to deliver the global political leadership needed to bring this vision to reality (IATA, 2007-7, p: 2).

2.2.1. IATA's Environment Programme

According to Paul Steele, the organisation's Chief Operating Officer for IATA, air transport must be actively engaged in building a sustainable future through many environmental opportunities. IATA's vision is based on a four-pillar strategy (IATA, 2007-17, p: 1):

- Investment in new technology.
- Environmentally efficient infrastructure.
- Improved operations based on industry best practice.
- Economic measures that provide effective incentives to improve environmental performance.

www.globalbizresearch.org
2.2.2 Aviation and Climate Change

All 190 ICAO contracting states have re-affirmed ICAO's leadership on aviation and environment by endorsing a comprehensive strategy on climate change, and embraced IATA’s 25% goal to improve fuel efficiency by 2020 (IATA, 2007-11, p: 1). While the political focus has been on economic measures, it is clear that emissions trading alone is not a solution for tackling climate change. CO2 emissions are directly related to fuel consumption. With the fuel bill at 28 % of airline operating costs, this industry is already the most highly incentivised to improve its environmental performance within the limits of technology (IATA, 2007-11, p: 2).

IATA has aligned the industry with a four pillar strategy to address climate change: (1) invest in new technology, (2) fly planes effectively, (3) build and operate efficient infrastructure and (4) call for positive economic incentives to encourage improved fuel efficiency and a reduction in CO2 emissions (IATA, 2008-2, p: 2).

Reducing fuel burn is at the heart of the issue. Every litre of fuel we can save reduces CO2 emissions by over 3 kilograms. Shortening routes, improving air traffic management and spreading best practice in fuel conservation are all approaches to this achievement (IATA, 2008-5, p: 1).

IATA has taken the initiative to supply high-resolution imagery to its member airlines. These initiatives will help airlines to develop fuel-efficient procedures that will reduce their CO2 footprint and will enhance safety margins, improve take-off and landing frequency and thus shorten gate-to-gate times (IATA, 2008-27, p: 5).

Our vision for carbon neutral growth leading to a carbon-free future sets the benchmark (IATA, 2008-33, p: 2). According to Samer Majali, Royal Jordanian Airlines CEO, the incentive for airlines to improve performance has never been bigger, but governments stand in our way. They must overcome their obsession with punitive and unilateral emissions trading schemes and start working on real solutions to reduce CO2 (IATA, 2008-35, p: 5).

Giovanni Bisignani, IATA’s Director General and CEO, identified three critical areas that can help the industry deliver even better results (IATA, 2009-5, p: 2):

- Alternative fuels: Bio-fuels show the most promise for reducing aviation’s carbon emissions. IATA is committed to using 10% alternative fuels by 2017. But we need the right bio-fuels, those that don’t compete with food for land-use or harm bio-diversity, and that meet the current exacting technical specifications of jet kerosene. The recent tests by Air New Zealand and Continental Airlines proved that bio-fuels are viable. Now we need to speed-up the certification process. The current timeline sees certification by 2013.
- **Better air navigation**: “We need to fly more effectively. Every Continuous Descent Approach (CDA) saves between 150 to 600kg of CO2. Each Clean Airspeed Departure (CAD) saves between 600 to 5,000 kg of CO2.

- **A global solution on positive economic measures**: Governments around the world must agree a global solution to reduce aviation emissions and refuses unilateral approach of Emissions Trading Scheme (ETS).

The aviation industry is united behind three targets: (1) a 1.5% average annual improvement in fuel efficiency to 2020, (2) capping net emissions from 2020 with carbon-neutral growth and (3) cutting emission in half by 2050 compared to 2005 (IATA, 2010-71, p: 1):

2.2.3. Solar airplane

IATA has become an Institutional Partner of Solar Impulse– the solar airplane that will fly around the world with no fuel and zero emissions. The agreement, signed by Bertrand Piccard, President of Solar Impulse and Giovanni Bisignani, Director General and CEO of IATA, establishes a framework for cooperation between the two organizations. IATA will provide assistance to ensure the smooth passage of the solar plane around the world (IATA, 2008-4, p: 1).

2.3. Safety

IOSA plays an important role. 136 airlines are on the IATA Operational Safety Audit (IOSA) registry but cargo is behind with only one airline on the registry. The goal is to bring all carriers on board by the end of the year 2008 (IATA, 2008-9, p: 1). Cooperation and a broader view based on global standards are necessary to address unique infrastructure challenges and upgrade the ageing and insufficient air traffic control technology (IATA, 2008-15, p: 2).

Flight Data Analysis (FDA) is a tool of IOSA. FDA offers airlines the capability to statistically analyse data from actual flights to improve procedures and monitor compliance. FDA offers critical insight for aircraft maintenance by using data to monitor engine condition trends and aircraft fuel usage (IATA, 2008-16, p: 2).

IATA’s three other key areas to improve safety are (IATA, 2008-16, p: 2):

- **Auditing**: e.g. Egypt is mandating IOSA as part of their safety oversight programmes.
- **Infrastructure**: IATA highlighted two areas of concern. Despite high user charges, in many airports, infrastructure is poorly funded and not up to international standards. Lack of transparency is a critical issue that is costing lives. IATA supports the creation of special infrastructure fund mechanisms to ensure that the money that airlines pay in charges stays in the industry.
- Skills Shortage: IATA expected the shortfall of skilful staff in air industry by 2026 and it broadens the pool of qualified candidates without compromising on safety.

Almost half (48%) of the year’s accidents took place during landing. The majority of these accidents involved a runway excursion. Many of these accidents could have been prevented by the initiation of a timely go-around. IATA, in cooperation with the Flight Safety Foundation, is developing a toolkit that will address the issues linked to runway safety enhancement, including the prevention of runway excursions. Nearly 20% of accidents 2007 related to ground damage. Lack of standardisation can contribute to ground handling activities that result in damage to aircraft. IATA developed the IATA Safety Audit for Ground Operations (ISAGO) programme to drastically reduce aircraft damage and personal injuries in the ground environment. About half of the accidents in 2007 were linked to a technical issue; maintenance events contributed to almost 20% of all occurrences last year. IATA is revising its safety strategy to encompass maintenance activities and Safety Management System implementation for maintenance organisations (IATA, 2008-24, p: 2):

As of 1 January 2009, IOSA has been a condition of IATA membership. Airlines that have not passed the quality control process by 31 March 2009 will have their memberships terminated (IATA, 2009-12, p: 1):

Safety is a constant challenge. Having made aviation the safest way to travel, further improvements will come only with careful data analysis. We must understand the underlying safety risk trends, not just from the handful of accidents each year, but by bringing together and analyzing data from millions of safe flights. The IATA Global Safety Information Center was launched in December 2009 for just that purpose (IATA, 2010-6, p: 2):

IATA is eager to work with governments to make IOSA a part of their safety oversight programs in air transport. IATA conducted accident analysis in 2011 and results were ((IATA, 2012-15, p: 2):

- Runway excursions, in which an aircraft departs a runway during a landing or takeoff, were the most common type of accident in 2011 (18% of total accidents). Unstable approaches—situations where the aircraft is too fast, above the glide slope, or touches down beyond the desired touchdown point—and contaminated runways are among the most common contributing factors to runway excursions on landing.

IATA’s Global Safety Information Center (GSIC) provides trend analysis that is helping the industry improve performance. For example, a new Flight Data exchange (FDX) system within the GSIC tracks unstable approach performance for the more than 700 airports in the database. Sharing such safety data complements the work of the Runway Excursion Risk Reduction (RERR) Toolkit, the second edition of which was launched in May 2011, and fuels global efforts to find solutions.
• **Ground damage**, accounting for 16% of accidents in 2011. This was up from 11% in 2010. These accidents include events such as damage resulting from ground handling operations and collisions during taxi. IATA has launched a number of initiatives to address ground accidents. In 2008, IATA launched the IATA Safety Audit for Ground Operations (ISAGO). This is the first global standard for the oversight and auditing of ground handling companies. Subsequently, IATA has launched the IATA Ground Operations Manual (IGOM) and the Aircraft Ground Damage Database (GDDB) to collect and analyze reports of ground damage from participating operators and ground service providers.

• **Sharing information**, data sharing is helping to identify and reduce risks. In 2010 the International Civil Aviation Organization, the US Department of Transportation and the European Commission agreed with IATA to create the Global Safety Information Exchange (GSIE). This was enriched in 2011 with the addition of databases covering ground damage and flight data.

➢ **IATA DGR e-newsletter**

The objective of IATA DGR e-newsletter is to provide users of the Dangerous Goods Regulations (DGR) with a better understanding of how to interpret and apply the Dangerous Goods Regulations (IATA, 2007-9, p: 1).

2.4. **Security**

IATA has worked on internationally recognized security accreditation standards and a security audit. This includes a global registry of secure supply chain operators, including known shipper details to be used by regulators and the supply chain (IATA, 2008-9, p: 2).

The IATA Training and Development Institute ITDI's Diploma in Aviation Security is designed to ensure participants have an opportunity to learn about every aspect of security and facilitation (IATA, 2008-27, p: 3).

Security is an uncoordinated mess. Since 2001 till 2008 airlines and their customers nearly have paid over US$30 billion for security measures. Governments must do their part and focus on risk management, harmonise global standards, make better use of technology, and take responsibility for the bill (IATA, 2008-33, p: 2).

Governments and industry are aligned in the priority that we place on security. But the cost of security is also an issue. Globally, airlines spend US$5.9 billion a year on what are essentially measures concerned with national security ((IATA, 2010-2, p: 2).

2.5. **Efficiency and quality**

Cargo 2000 was established over a decade ago to simplify processes and implement effective quality standards from order to delivery. IATA simplified the supply chain process from 40 to 19 steps and developed common parameters for quality measurement. Moreover,
IATA quality audit based on Cargo 2000 standards is another support in this area (IATA, 2008-9, p: 2).

- **Airport Infrastructure**

 The airport structure and regulatory system play a critical role to deliver world-class airport facilities. Lack of investment in an airport infrastructure delivers embarrassingly-low service levels on everything from security wait-times to baggage delivery and almost everything in-between (IATA, 2007-4, p: 1).

 IATA, along with the majority of other industry groups, support the use of IATA’s Worldwide Scheduling Guidelines (WSG) to manage congestion at international airports (IATA, 2007-24, p: 1).

3. Methodology

In this section the researcher gives details about the method of research used and analysis of the information gathered for the current study.

3.1. The Pilot Study

The researcher conducted a pilot study adopting brainstorm techniques of his colleagues about: the title of study, the questions of research, methodology and questionnaire design.

3.2. Descriptive Analytical Method and Case Study Technique

Descriptive Analytical Approach handles the current phenomenon as it is in the real field, whether by a qualitative technique; case study technique. The principal purpose of the descriptive method is to evaluate things and conditions in their natural cases. Regarding the case study method, it has the crux importance in data collection and analysis in Descriptive Approach.

3.3. SPSS for Data Analysis

For techniques of analysis, statistics models that are suitable for measuring and analyzing attitudes and opinions towards a phenomenon are the Frequency, the Mean, the Standard Deviation, the Standard Error of Mean, Test of Variance, ETA Value of Correlation, and ETA Square Value of Regression.

3.4. Sample and Questionnaire

The current research depends on the purposive sample for data collection. The purposive sample includes subjects selected on the basis of specific characteristics or qualities. In a similar method, the quota sample, subjects are selected to meet a predetermined or known percentage.

The purposive sample of the current study includes staff of Royal Jordanian Airlines (3 forms), and staff of Aqaba Airports Company working at King Hussein Airport (7 forms). The current study depends on intensive interviews, or in-depth interviews, which are
essentially a hybrid of the one-on-one personal interview approach. All distributed forms of questionnaire are answered and returned back.

Furthermore, this study adopted the Likert Scale, with choices strongly disagree = 1, disagree = 2, neutral = 3, agree = 4 and strongly agree = 5; and the Dichotomous Choice, with choices Yes = 1 and No = 2; since they are preferable scales to measure attitudes and points of view towards a specific issue or phenomenon (appendix no. 2).

4. Results and Discussion

Table 2: Results of respondents according to background of IATA site

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std.Error of Mean</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background of IATA site</td>
<td>Yes 54.5%</td>
<td>No 45.5%</td>
<td>1.45</td>
<td>0.157</td>
<td>0.522</td>
<td>0.662</td>
<td>0.149</td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Regarding the table no. 2 mentioned above, we can say that most of respondents have no background about information of IATA’s site; since the Mean degree is 1.45 with no dispersion among answers of respondents (Std. Deviation = 0.522) and no dispersion from the Mean of population (Std. Error of Mean = 0.157). Moreover, there are no significant differences among Sub-Means of company variable (F. Significance = 0.662 > 0.05). Consequently, we accept the null hypothesis. In additions, there is weak correlation between the company variable and respondent variable (ETA = 0.149), and the area variable has less impact on the respondent variable (ETA Square = 0.022). One respondent mentions that his background on IATA site is determined in three areas: areas of activities, events, and training. Another one has background just on training programs, since he had training on terminal buildings planning standards (LOS).

Table 3: Results of respondents concerning with Background of STB.

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std.Error of Mean</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background of STB</td>
<td>Yes 63.6%</td>
<td>No 36.4%</td>
<td>1.36</td>
<td>0.152</td>
<td>0.505</td>
<td>0.910</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Regarding the table no. 3, we can say that plurality of respondents have no background about information of IATA's Simplifying Business Program; the Mean degree is 1.36 with no dispersion among answers of respondents (Std. Deviation = 0.505) and no dispersion from the Mean of population (Std. Error of Mean = 0.152). Moreover, there are no significant differences among Sub-Means of company variable (F. Significance = 0.910 > 0.05). Accordingly, we accept the null hypothesis. Moreover, there is little correlation between the company variable and respondent variable (ETA = 0.039), and the company variable has feeble impact on the respondent variable (ETA Square = 0.001). Some of respondents comments that his background about the STB program is concluded in electronic ticketing and common use self-service check-in. Another respondent points out that the STB program
has e-freight, baggage improvement programs, fast travel IATA e-services, passenger facilities, and new distribution capabilities.

Table 4: Results of respondents pertaining to application of STB

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std.Error of Mean</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of STB</td>
<td>S. Agree</td>
<td>27.3%</td>
<td>45.5%</td>
<td>27.2%</td>
<td>100%</td>
<td>3.00</td>
<td>0.234</td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Given the table no. 4, arguably, preponderance of respondents are not able to decide about the application of IATA's Simplifying Business Program; the Mean degree is 3.00 with no dispersion among answers of respondents (Std. Deviation = 0.775) and no dispersion from the Mean of population (Std. Error of Mean = 0.234). Moreover, there are no significant differences among Sub-Means of company variable (F. Significance = 0.078 > 0.05). As a result, we accept the null hypothesis. Furthermore, there is moderate correlation between the company variable and respondent variable (ETA = 0.553), and the company variable explains in an assuming manner the respondent variable (ETA Square = 0.306). One respondent states that STB program is applied only in sales and reservation and check in service.

Table 5: Results of respondents regarding to use of IATA interactive maps

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std.Error of Mean</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use IATA interactive maps</td>
<td>S. Agree</td>
<td>27.3%</td>
<td>54.5%</td>
<td>18.2%</td>
<td>100%</td>
<td>2.91</td>
<td>0.211</td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Seeing that the table no. 5, it may be said that majority of respondents also can't give a specific decision about the using the IATA interactive maps in real practices or not; the Mean degree is 2.91 with no dispersion among answers of respondents (Std. Deviation = 0.701) and no dispersion from the Mean of population (Std. Error of Mean = 0.211). Moreover, there are no significant differences among Sub-Means of company variable (F. Significance = 0.237 > 0.05). As a result, we accept the null hypothesis. Furthermore, there is modest correlation between the company variable and respondent variable (ETA = 0.389), and the company variable explores in a little manner the respondent variable (ETA Square = 0.151).

Table 6: Results of respondents regarding to Background on IATA environmental program

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std.Error of Mean</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background on IATA environmental program</td>
<td>Yes</td>
<td>45.5%</td>
<td>1.55</td>
<td>0.157</td>
<td>0.522</td>
<td>0.662</td>
<td>0.149</td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Seeing that the table no. 6, we can say that plurality of respondents have no idea on the IATA's environmental program; the Mean degree is 1.55 with no dispersion among answers
of respondents (Std. Deviation = 0.522) and no dispersion from the Mean of population (Std. Error of Mean = 0.157). In additions, there are no significant differences among Sub-Means of company variable (F. Significance = 0.662 > 0.05). Consequently, we accept the null hypothesis. Furthermore, there is humble correlation between the company variable and respondent variable (ETA = 0.149), and the company variable clears out in a slight manner the respondent variable (ETA Square = 0.022).

Table 7: Results of respondents pertaining to application of IATA environmental program

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std. Error of Mean</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of IATA environmental program</td>
<td>S. Agree</td>
<td>27.3%</td>
<td>54.5%</td>
<td>18.2%</td>
<td>4.00</td>
<td>0.234</td>
<td>0.411</td>
</tr>
<tr>
<td></td>
<td>Agree</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.276</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>Disagree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Regarding the table no. 7, arguably that preponderance of respondents also agree that there is application of IATA environmental programme in real field to some range; the Mean degree is 4.00 with no dispersion among answers of respondents (Std. Deviation = 0.775) and no dispersion from the Mean of population (Std. Error of Mean = 0.234). This is contrast to the results in the previous point concerning the background on IATA's environmental programme. Moreover, there are no significant differences among Sub-Means of company variable (F. Significance = 0.411 > 0.05). As a result, we accept the null hypothesis. Furthermore, there is modest correlation between the company variable and respondent variable (ETA = 0.276), and the company variable explores in a negligible manner the respondent variable (ETA Square = 0.076). Some of respondents say that IATA's environmental programme is applied in solid waste management.

Table 8: Results of respondents regarding to Background on solar airplane

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std. Error of Mean</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background on solar airplane</td>
<td>Yes</td>
<td>36.4%</td>
<td>0.152</td>
<td>0.505</td>
<td>0.241</td>
<td>0.386</td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>63.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Seeing that the table no. 8, we can say that plurality of respondents has no background on the solar airplane; the Mean degree is 1.64 with no dispersion among answers of respondents (Std. Deviation = 0.505) and no dispersion from the Mean of population (Std. Error of Mean = 0.152). Moreover, there are no significant differences among Sub-Means of company variable (F. Significance = 0.241 > 0.05). Accordingly, we accept the null hypothesis. Furthermore, there is slight correlation between the company variable and respondent variable (ETA = 0.386), and the company variable reveals in a little manner the respondent variable (ETA Square = 0.149). One respondent comments that it is too early that the solar airplane flies around the world.
Table 9: Results of respondents regarding to adoption of solar airplane

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std.Error of Mean</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adoption of solar airplane</td>
<td>S. Agree</td>
<td>9.1%</td>
<td>2.64</td>
<td>0.203</td>
<td>0.674</td>
<td>0.389</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>Agree</td>
<td>18.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
<td>72.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disagree</td>
<td>9.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Giving in the table no. 9, we can say that preponderance of respondents is neutral to decide about adoption of solar airplane in air transport business herein; the Mean degree is 2.64 with no dispersion among answers of respondents (Std. Deviation = 0.674) and no dispersion from the Mean of population (Std. Error of Mean = 0.203). Moreover, there are no significant differences among Sub-Means of company variable (F. Significance = 0.389 > 0.05). Accordingly, we accept the null hypothesis. Furthermore, there is slight correlation between the company variable and respondent variable (ETA = 0.289), and the company variable reveals in a trifle manner the respondent variable (ETA Square = 0.083).

Table 10: Results of respondents pertaining to Background on areas of safety

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std.Error of Mean</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background on areas of safety</td>
<td>Yes</td>
<td>54.5%</td>
<td>1.45</td>
<td>0.522</td>
<td>0.662</td>
<td>0.149</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>45.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Seeing that the table no. 10, we can say that majority of respondents has no background on areas of safety; the Mean degree is 2.64 with no dispersion among answers of respondents (Std. Deviation = 0.522) and no dispersion from the Mean of population (Std. Error of Mean = 0.157). Moreover, there are no significant differences among Sub-Means of company variable (F. Significance = 0.662 > 0.05). As a result, we accept the null hypothesis. Furthermore, there is slight correlation between the company variable and respondent variable (ETA = 0.149), and the company variable reveals in a trifle manner the respondent variable (ETA Square = 0.022). One respondent clears out that his background about safety in air transport is gained from ICAO.

Table 11: Results of respondents concerning to application of keys of safety

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std.Error of Mean</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of keys of safety</td>
<td>S. Agree</td>
<td>18.2%</td>
<td>3.36</td>
<td>0.338</td>
<td>1.120</td>
<td>0.538</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>Agree</td>
<td>18.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
<td>54.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disagree</td>
<td>9.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Giving in the table no. 11, we can say that preponderance of respondents is agree that there is application of keys of safety in real performance; the Mean degree is 3.36 with dispersion among answers of respondents (Std. Deviation = 1.120) and no dispersion from the Mean of population (Std. Error of Mean = 0.338). This is contrast to the results in the
previous point concerning the background on IATA’s areas of safety. Moreover, there are no significant differences among Sub-Means of company variable (F. Significance = 0.538 > 0.05). Accordingly, we accept the null hypothesis. Furthermore, there is slight correlation between the company variable and respondent variable (ETA = 0.209), and the company variable clears out in a modest manner the respondent variable (ETA Square = 0.043). Respondents of AAC say that they always attend airport safety and security inside and outside the KHA, which are conducted by ICAO certified trainers.

Table 12: Results of respondents regarding to background on FDA

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std. Error</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background on FDA</td>
<td>Yes: 27.3%</td>
<td>1.73</td>
<td>0.141</td>
<td>0.467</td>
<td>0.256</td>
<td>0.375</td>
<td>0.141</td>
</tr>
<tr>
<td></td>
<td>No: 72.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Given in the table no. 12, we can say that majority of respondents has no background on FDA; the Mean degree is 1.73 with no dispersion among answers of respondents (Std. Deviation = 0.467) and no dispersion from the Mean of population (Std. Error of Mean = 0.141). In additions, there are no significant differences among Sub-Means of company variable (F. Significance = 0.256 > 0.05). As a result, we accept the null hypothesis. Furthermore, there is weakly correlation between the company variable and respondent variable (ETA = 0.375), and the company variable reveals in a slight manner the respondent variable (ETA Square = 0.141).

Table 13: Results of respondents concerning to application of FDA

<table>
<thead>
<tr>
<th>Item</th>
<th>S. Agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>S. Disagree</th>
<th>Total</th>
<th>Mean</th>
<th>Std. Error</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of FDA</td>
<td>27.3%</td>
<td>45.5%</td>
<td>18.2%</td>
<td>9.1%</td>
<td>100%</td>
<td>2.91</td>
<td>0.285</td>
<td>0.944</td>
<td>0.233</td>
<td>0.392</td>
<td>0.153</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Regarding the table no. 13, we can say that preponderance of respondents is neutral about the application of FDA in real performance; the Mean degree is 2.91 with dispersion among answers of respondents (Std. Deviation = 0.944) and no dispersion from the Mean of population (Std. Error of Mean = 0.285). Moreover, there are no significant differences among Sub-Means of company variable (F. Significance = 0.233 > 0.05). Accordingly, we accept the null hypothesis. Furthermore, there is slight correlation between the company variable and respondent variable (ETA = 0.392), and the company variable clears out in a modest manner the respondent variable (ETA Square = 0.153).

Table 14: Results of respondents regarding to background on diploma of TTDI

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std. Error</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background on diploma of ITDI</td>
<td>Yes: 63.6%</td>
<td>1.36</td>
<td>0.152</td>
<td>0.505</td>
<td>0.910</td>
<td>0.039</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>No: 36.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program
Given in the table no. 14, we can say that majority of respondents has no background on diploma of ITDI; the Mean degree is 1.36 with no dispersion among answers of respondents (Std. Deviation = 0.505) and no dispersion from the Mean of population (Std. Error of Mean = 0.152). In additions, there are no significant differences among Sub-Means of company variable (F. Significance = 0.910 > 0.05). As a result, we accept the null hypothesis. Furthermore, there is weakly correlation between the company variable and respondent variable (ETA = 0.039), and the company variable reveals in a slight manner the respondent variable (ETA Square = 0.001).

Table 15: Results of respondents regarding to training of staff on diploma of TTDI

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequencies</th>
<th>Mean</th>
<th>Std. Error of Mean</th>
<th>Std. Deviation</th>
<th>F Sig.</th>
<th>ETA</th>
<th>ETA Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training of staff on diploma of ITDI</td>
<td>S. Agree</td>
<td>18.2%</td>
<td>3.27</td>
<td>0.359</td>
<td>1.191</td>
<td>0.020</td>
<td>0.686</td>
</tr>
<tr>
<td></td>
<td>Agree</td>
<td>18.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neutra l</td>
<td>45.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disagree</td>
<td>9.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Disagree</td>
<td>9.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Elaboration of the researcher depending on SPSS program

Seeing that the table no. 15, we can say that preponderance of respondents has the diploma of ITDI; the Mean degree is 3.27 however dispersion among answers of respondents (Std. Deviation = 1.191) and no dispersion from the Mean of population (Std. Error of Mean = 0.359). Moreover, there are significant differences among Sub-Means of company variable (F. Significance = 0.020 < 0.05). Accordingly, we accept the alternative hypothesis. Furthermore, there is moderate correlation between the company variable and respondent variable (ETA = 0.686), and the company variable clears out in a moderate manner the respondent variable (ETA Square = 0.471). Some of respondents explain that the ITDI's Diploma in aviation security is concise for the airport staff only.

4. Conclusion and Recommendations

The study achieved its objectives. It demonstrated the mainstay issues of IATA since 2007 to 2012; IATA's STB programme, environmental performance in aviation, Safety, and security. Also, there is an estimation of the current status quo regarding the Royal Jordanian Airlines and King Hussein Airport in Aqaba.

The results of discussion in previous section show that the majority of staff in the Royal Jordanian Airlines and Aqaba Airports Company in Aqaba are unaware of recent issues in IATA published materials through the period from October 2007 to October 2012 as a scientific determinant of this current study. Shortage of staff’s knowledge addresses both the background and application of each issue. Accordingly, we refuse hypotheses No. 1 and No. 2.
Moreover, the statistical findings reveal that there are no significant differences among sum-means of company variables and the modest value of correlation between the company variable and respondent variable. Except in one criterion concerning the diploma in the aviation security conducted by the IATA Training and Development Institute. The respondents say that this diploma is pertaining only to the staff of airports and not for those of airlines. Consequently and as a whole, we accept the null hypothesis No. 3.

The study recommends raising the awareness of IATA issues and standards in different areas of King Hussein Airport in Aqaba and the Royal Jordanian Airlines in general and particularly in Aqaba. This research proposes a five-years action plan for adopting and application of IATA standards and criteria in airports and airlines performance including the following steps:
1. Forming steering committee of specialists in the two cases of study.
2. Placing the mission of performance in the two entities.
3. Placing the message of performance in the two entities.
4. Determining of performance's objectives in the two entities.
5. Specifying of performance's strategies to achieve objectives.
6. Choosing techniques to implement strategies.
7. Specifying the areas of performance that need changes and promotion.
8. Adopting standards of best practices in each area.

References
IATA (2007-4): "Fixing the UK's Airports", Montreal, Quebec, Canada.
IATA (2007-16): "IATA e-freight pilots go live", Montreal, Quebec, Canada.
IATA (2007-17): "New Director Raises Profile of IATA's Environment Programme ", Montreal, Quebec, Canada.
IATA (2008-4): "IATA joins forces with Solar Impulse", Montreal, Quebec, Canada.
IATA (2008-9): "Improve Air Cargo Competitiveness", Montreal, Quebec, Canada.
IATA (2008-15): "Urgent Work Needed To Improve Latin America Safety", Montreal, Quebec, Canada.
IATA (2008-17): "IATA Welcomes Shorter Route over China", Montreal, Quebec, Canada.
IATA (2008-33): "Fuel Crisis a Catalyst for Change", Montreal, Quebec, Canada.

IATA (2009-5): "IATA reiterates its environmental commitment even in times of crisis", Montreal, Quebec, Canada.

IATA (2009-9): "StB January Newsletter: As economy worsens, StB stays on track", Montreal, Quebec, Canada.

IATA (2009-17): "Opportunities for Malaysian Aviation", Montreal, Quebec, Canada.

IATA (2010-6): "Aircraft Accident Rate Drops in 2009- Renewed Focus on Training, Data", Montreal, Quebec, Canada.

IATA (2010-10): "Aircraft Accident Rate Drops in 2009- Renewed Focus on Training, Data", Montreal, Quebec, Canada.

IATA (2010-50): "StB at Check-in 2010 - Las Vegas", Montreal, Quebec, Canada.

IATA (2011-3): "E-freight achievements and more", Montreal, Quebec, Canada.

IATA (2012-3): “StB Newsletter January 2012”, Montreal, Quebec, Canada

IATA (2012-15): " Press Release: Global Accident Rate Reaches New Low", Montreal, Quebec, Canada

IATA (2012-17): "Strong Partnerships across the Air Cargo Value Chain Safety, Security, Sustainability and Competitiveness Top the Agenda", Montreal, Quebec, Canada.

IATA (2012-21): "Rising Oil Prices Reducing Profitability Regional Differences Widen", Montreal, Quebec, Canada.

APPENDIX (1): Abbreviation of Study

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB</td>
<td>IATA's Simplifying the Business</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>CUSS</td>
<td>Common-Use Self-Service Kiosk</td>
</tr>
<tr>
<td>ET</td>
<td>Electronic ticketing</td>
</tr>
<tr>
<td>IATA</td>
<td>International Air Transport Association</td>
</tr>
<tr>
<td>V-MPD</td>
<td>Virtual Miscellaneous Document</td>
</tr>
<tr>
<td>EMD</td>
<td>Electronic Miscellaneous Document</td>
</tr>
<tr>
<td>MPD</td>
<td>Multi Purpose Document</td>
</tr>
<tr>
<td>BCBP</td>
<td>Bar coded boarding passes</td>
</tr>
</tbody>
</table>
APPENDIX (2): Questionnaire

Mr/……………………………………………………Position /…………………………

I have the honor to present to you the model of the survey form for a research study entitled "Evaluating Study for Performance of Royal Jordanian and King Hussein Airport in Light of IATA New Trends". The study targets to evaluate the current situation in the Royal Jordanian and King Hussein Airport in the light of recent trends of the IATA during the period October 2007 - October 2012. Please note that your response will be highly appreciated and be top secret and for be used for the purposes of scientific research only.

1- You have background that the electronic site of IATA has the following main parts:
 - About Us - Membership - Work Groups - Areas of Activity - Solutions
 - Events - Training - Pressroom - Sub Navigation
 Yes () No ()
Comment:……………………………………………………………………………………

2-A You have background that IATA's Simplifying the Business (STB) programme consists of five projects:
 - electronic ticketing - Common use self-service check-in - Bar coded boarding passes
 - Radio frequency identification (RFID) for aviation - IATA e-freight-
 Yes () No ()
Comment:……………………………………………………………………………………

2-B The IATA's Simplifying the Business (STB) programme is applied in the Performance of the Royal Jordanian and the King Hussein Airport.
 Strongly agree () Agree () Neutral () Disagree () Strongly disagree ()

www.globalbizresearch.org
2-C The Royal Jordanian Airline and King Hussein Airport Management use IATA’s Interactive Maps on Google engine that offer useful information on IATA’s Simplifying the Business (STB) programme.

Comment: ……………………………………………………………………………………

Strongly agree () Agree () Neutral () Disagree () Strongly disagree ()

3-A You have background that IATA’s Environment Programme vision is based on a four-pillar strategy:
- Investment in new technology
- Environmentally efficient infrastructure.
- Economic measures that provide effective incentives to improve environmental performance.

Comment: ……………………………………………………………………………………

Yes () No ()

3-B The IATA’s Environment programme is applied in the Performance of the Royal Jordanian and the King Hussein Airport.

Comment: ……………………………………………………………………………………

Strongly agree () Agree () Neutral () Disagree () Strongly disagree ()

3-C You have background that IATA has become an Institutional Partner of Solar Impulse—the solar airplane that will fly around the world with no fuel and zero emissions.

Comment: ……………………………………………………………………………………

Yes () No ()

3-D The solar airplane that has been expected to fly around the world with no fuel and zero emissions is adopted by the Royal Jordanian Airline.

Comment: ……………………………………………………………………………………

Strongly agree () Agree () Neutral () Disagree () Strongly disagree ()

4-A You have background that IATA’s three key areas to improve safety are:
- Auditing: by mandating IOSA as part of their safety oversight programmes.
- Infrastructure: by supporting the creation of special infrastructure fund mechanisms to ensure that the money that airlines pay in charges stays in the industry.
- Skills: by expansion of the pool of qualified staff without compromising on safety

Comment: ……………………………………………………………………………………

Yes () No ()

4-B The IATA’s three key areas to improve safety are applied in the Performance of the Royal Jordanian and the King Hussein Airport.

Comment: ……………………………………………………………………………………

Strongly agree () Agree () Neutral () Disagree () Strongly disagree ()

4-C You have background that Flight Data Analysis (FDA) is a tool of IATA Operational Safety Audit (IOSA). FDA offers airlines the capability to statistically analyze data from actual flights to improve procedures and monitor compliance. FDA offers critical insight for aircraft maintenance by using data to monitor engine condition trends and aircraft fuel usage

Comment: ……………………………………………………………………………………

Yes () No ()
4-D The Flight Data Analysis (FDA) is applied in the Performance of the Royal Jordanian and the King Hussein Airport.

Strongly agree () Agree () Neutral () Disagree () Strongly disagree ()

Comment: ...

5-A You have background that The IATA Training and Development Institute ITDI gives Diploma in Aviation Security Which is designed to ensure participants have an opportunity to learn about every aspect of security and facilitation.

Yes () No ()

Comment: ...

5-B The staff of the Royal Jordanian and the King Hussein Airport be trained on The ITDI’s Diploma in Aviation Security.

Strongly agree () Agree () Neutral () Disagree () Strongly disagree ()

Comment: ...